
Array Broadcasting in Numpy

Let’s explore a more advanced concept in numpy called broadcasting. The
term broadcasting describes how numpy treats arrays

with different shapes
during arithmetic operations. Subject to certain constraints, the smaller array
is “broadcast” across the

larger array so that they have compatible shapes.
Broadcasting provides a means of vectorizing array operations so that looping

occurs in C instead of Python. It does this without making needless copies of
data and usually leads to efficient algorithm

implementations. There are also
cases where broadcasting is a bad idea because it leads to inefficient use of
memory that slows

computation. This article provides a gentle introduction to
broadcasting with numerous examples ranging from simple to

involved. It also
provides hints on when and when not to use broadcasting.

numpy operations are usually done element-by-element which requires two arrays
to have exactly the same shape:

Example 1

>>> from numpy import array

>>> a = array([1.0, 2.0, 3.0])

>>> b = array([2.0, 2.0, 2.0])

>>> a * b

array([2., 4., 6.])

numpy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet
certain constraints. The simplest broadcasting

example occurs when an array and
a scalar value are combined in an operation:

Example 2

>>> from numpy import array

>>> a = array([1.0,2.0,3.0])

>>> b = 2.0

>>> a * b

array([2., 4., 6.])

The result is equivalent to the previous example where b was an array. We
can think of the scalar b being stretched during the

arithmetic operation
into an array with the same shape as a. The new elements in b, as shown
in Figure 1, are simply copies of the

original scalar. The stretching
analogy is only conceptual. numpy is smart enough to use the original scalar
value without actually

making copies so that broadcasting operations are as
memory and computationally efficient as possible. Because Example 2

moves less memory, (b is a scalar, not an array) around during the
multiplication, it is about 10% faster than Example 1 using the

standard
numpy on Windows 2000 with one million element arrays.

Figure 1

In the simplest example of broadcasting, the scalar `̀b̀̀ is
stretched to become an array of with the same shape as `̀à̀ so the shapes
are

compatible for element-by-element multiplication.

The rule governing whether two arrays have compatible shapes for broadcasting
can be expressed in a single sentence.

In order to broadcast, the size of the trailing axes for both arrays in
an operation must either be the same size or one
of them must be one.

If this condition is not met, a ValueError('frames are not aligned')
exception is thrown indicating that the arrays have

incompatible shapes. The
size of the result array created by broadcast operations is the maximum size
along each dimension

from the input arrays. Note that the rule does not say
anything about the two arrays needing to have the same number of

dimensions.
So, for example, if you have a 256 x 256 x 3 array of RGB values, and you want
to scale each color in the image by a

different value, you can multiply the
image by a one-dimensional array with 3 values. Lining up the sizes of the
trailing axes of

these arrays according to the broadcast rule shows that they
are compatible

Image (3d array) 256 x 256 x 3

Scale (1d array) 3

Result (3d array) 256 x 256 x 3

The Broadcasting Rule

Search the docs ...

In the following example, both the A and B arrays have axes with length
one that are expanded to a larger size in a broadcast

operation.

A (4d array) 8 x 1 x 6 x 1

B (3d array) 7 x 1 x 5

Result (4d array) 8 x 7 x 6 x 5

Below, are several code examples and graphical representations that help make
the broadcast rule visually obvious. Example 3

adds a one-dimensional array
to a two-dimensional array:

Example 3

>>> from numpy import array

>>> a = array([[0.0, 0.0, 0.0],
... [10.0, 10.0, 10.0],

... [20.0, 20.0, 20.0],

... [30.0, 30.0, 30.0]])

>>> b = array([1.0, 2.0, 3.0])

>>> a + b

array([[1., 2., 3.],

 [11., 12., 13.],

 [21., 22., 23.],

 [31., 32., 33.]])

As shown in Figure 2, b is added to each row of a. When b is
longer than the rows of a, as in Figure 3, an exception is raised

because of the incompatible shapes.

Figure 2

A two dimensional array multiplied by a one dimensional array results in
broadcasting if number of 1-d array elements matches the

number of 2-d
array columns.

Figure 3

When the trailing dimensions of the arrays are unequal, broadcasting fails
because it is impossible to align the values in the rows of

the 1st array
with the elements of the 2nd arrays for element-by-element addition.

Broadcasting provides a convenient way of taking the outer product (or any
other outer operation) of two arrays. The following

example shows an outer
addition operation of two 1-d arrays that produces the same result as
Example 3

Example 4

>>> from numpy import array, newaxis

>>> a = array([0.0, 10.0, 20.0, 30.0])

>>> b = array([1.0, 2.0, 3.0])

>>> a[:,newaxis] + b

array([[1., 2., 3.],

 [11., 12., 13.],

 [21., 22., 23.],

 [31., 32., 33.]])

Here the newaxis index operator inserts a new axis into a, making it a
two-dimensional 4x1 array. Figure 4 illustrates the

stretching of both
arrays to produce the desired 4x3 output array.

© Copyright 2008-2020, The SciPy community.

Last updated on Jan 31, 2021.

Created using Sphinx 2.4.4.

1

[2]

Figure 4

In some cases, broadcasting stretches both arrays to form an output array
larger than either of the initial arrays.*

A Practical Example: Vector Quantization.

Broadcasting comes up quite often in real world problems. A typical example
occurs in the vector quantization (VQ) algorithm

used in information theory,
classification, and other related areas. The basic operation in VQ [#f0] finds
the closest point in a set

of points, called codes in VQ jargon, to a given
point, called the observation. In the very simple, two-dimensional case shown
in

Figure 5, the values in observation describe the weight and height of an
athlete to be classified. The codes represent different

classes of
athletes. [2] Finding the closest point requires calculating the distance
between observation and each of the codes. The

shortest distance provides the
best match. In this example, codes[0] is the closest class indicating that
the athlete is likely a

basketball player.

Figure 5

The basic operation of vector quantization calculates the distance between
an object to be classified, the dark square, and multiple

known codes, the
gray circles. In this simple case, the codes represent individual classes.
More complex cases use multiple codes per

class.

Footnotes

Vector Quantization J. Makhoul, S. Roucos, and H. Gish, “Vector Quantization in Speech Coding,” Proc. IEEE, vol. 73, pp. 1551-

1587, Nov. 1985.

In this example, weight has more impact on the distance calculation
than height because of the larger values. In practice, it is

important to
normalize the height and weight, often by their standard deviation across the
data set, so that both have equal

influence on the distance calculation.

The code to produce the figures is part of the AstroML book

Note

https://www.sphinx-doc.org/
http://www.astroml.org/book_figures/appendix/fig_broadcast_visual.html

