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“Many books on real options can be intimidating. Mun offers a pragmatic, re-
liable, and entertaining guide. Complex concepts and formulas are brilliantly
interspersed with well-chosen examples and step-by-step walk-throughs from
a variety of industries.”

—Shota Hattori
President and CEO, Kozo Keikaku Engineering, Inc. (Japan)

“Finally, a real options analysis book that is technically sophisticated enough
to be useful, and practically written so that it can actually be used. It is des-
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“The clarity and comprehensive coverage makes it one of the best guides
for all practitioners . .. coupled with state-of-the-art financial tools on
CD-ROM.”

—Michael Sim
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“Mun certainly has earned the reputation of being an expert on the subject
.. . consultants, analysts, decision makers, and engineers will be all over this
book and its software.”

—Phyllis Koessler
Managing Director, Koessler and Associates (Switzerland)



“The book is far and away the clearest, most comprehensive guide to real
options analysis to date, and is destined to be a classic—it is a complete
guide to the practical application of real options analysis. It strikes a superb
balance between solid intuition, rigorous analysis, and numerous practical
examples.”
—John Hogan, Ph.D.
Boston College (USA)

“The book leads the field in real options analytics and is a must-read for
anyone interested in performing such analyses. Mun has made a formidable
subject crystal clear and exponentially easy for senior management to under-
stand. Monte Carlo simulation and real options software alone is worth the
book price many times over.”

—Morton Glantz, Renowned educator in finance, author
of several books, financial advisor to government (USA)
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Preface

Heal Options Analysis, Second Edition, provides a novel view of evalu-
ating capital investment strategies by taking into consideration the
strategic decision-making process. The book provides a qualitative and
quantitative description of real options, the methods used in solving real
options, why and when they are used, and the applicability of these meth-
ods in decision making. In addition, multiple business cases and real-life ap-
plications are discussed. This includes presenting and framing the real
options problems, as well as introducing a stepwise quantitative process
developed by the author for solving these problems using the different
methodologies inherent in real options. Included are technical presenta-
tions of models and approaches used as well as their theoretical and math-
ematical justifications.

The book is divided into three parts: the qualitative discussions of real op-
tions; the quantitative analysis and mathematical concepts; and practical soft-
ware and business case applications. The first part looks at the qualitative
nature of real options, providing actual qualitative business cases and scenar-
ios of real options in the industry, as well as high-level explanations of how
real options provide the much-needed insights in decision making. The second
part of the book looks at the step-by-step quantitative analysis, complete with
worked-out examples and mathematical formulae. The third part illustrates
the use of the Real Options Valuation’s Super Lattice Solver software and Risk
Simulator software, both developed by the author and included in the enclosed
CD-ROM (standard 30-day trial with extended academic license). In this sec-
tion, more detailed quantitative business cases are solved using the software.

This second edition provides many updates including:

® A trial version and introduction to the Super Lattice Solver software that
supersedes the author’s older Real Options Analysis Toolkit software
(all bugs and computational errors have been fixed and verified).

® A trial version and introduction to the Risk Simulator software for run-
ning Monte Carlo simulation, forecasting, and optimization also created
by the author.
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m Extended examples and step-by-step computations of American, Bermu-
dan, European, and customized options (including abandon, barrier,
chooser, contraction, expansion, and other options).

m More extensive coverage of advanced and exotic real and financial op-
tions (multiple-phased sequential compound options, complex sequen-
tial compound options, barrier options, trinomial mean-reverting options,
quadranomial jump-diffusion options, pentanomial dual-asset rainbow
options, multiple-asset with multiple-phased options, engineering your
own exotic options, and so forth).

m Extended real options cases with step-by-step worked-out solutions using
the Super Lattice Solver software.

m Several brand new case studies on applying real options in the industry
(manufacturing, pharmaceutical, biotechnology, real estate, Department
of Defense, and others).

m An extended discussion on volatility estimates, risk, and uncertainty.

This book is targeted at both the uninitiated professional as well as
those well-versed in real options applications. It is also applicable for use as
a second-year M.B.A. level textbook or introductory Ph.D. reference book.

JOHNATHAN MUN, PH.D.
JohnathanMun@cs.com

San Francisco, California
September 2005
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Chapter Summaries

CHAPTER 1: A NEW PARADIGM?

Introduction

This chapter looks at the issues of new decision-making challenges and pro-
vides an introduction to real options analysis as the solution to these new
challenges. The chapter briefly defines real options analysis and its many
forms, when it is used, who has used it in the past, and why it is used. Exam-
ples provided come from multiple industries, including oil and gas exploration
and production, pharmaceutical research and development, e-commerce
valuation, IT infrastructure investment justification, prioritization of venture
capital investments, mergers and acquisitions, research and development, In-
ternet start-up valuation, structuring of venture capital contracts, timing of
investments, parallel portfolio development, profitability profiling, and so
forth. The chapter also profiles the types of options, defines real options analy-
sis, and introduces several sample business cases of how real options are used
as well as quotations of what the experts are saying. Finally, actual business
cases from industry are provided in the appendixes. These appendixes are
contributed by major corporations detailing the applications of real options
in their respective companies.

A Paradigm Shift

The new economy provides a challenge for the corporate decision-maker.
Corporate valuation may no longer depend on traditional fundamentals but
rather on future expectations. Investment strategies with high risks and un-
certainty or irreversible corporate decisions coupled with managerial flexi-
bility provide the best candidates for real options. In this chapter, the reader
will find that real options analysis is indeed a new way of thinking rather
than simply the application of advanced analytical procedures.
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Sample Business Gases Where Traditional
Approaches Break Down

These sections introduce the issues, concerns, and problems of traditional
methods, issues that are addressed using a real options framework. The sec-
tions also introduce several business cases requiring the use of real options
analysis. These cases include IT investments in a new operating system, pri-
oritizing e-commerce strategies, pharmaceutical research and development,
oil and gas exploration, manufacturing contractual decisions, valuation of
different venture capital opportunities, capital structuring and valuation of
an Internet start-up firm, and selecting capital investment projects within the
context of a portfolio. In each of these cases, the reader delves into the minds
of people closest to the analysis and decision-making process, and examines
their thinking and analytical approach.

The Real Options Solution and Issues to Gonsider

These two sections detail the use of real options in terms of thinking strate-
gically, identifying strategic optionalities, valuing and prioritizing strategies,
optimizing and timing strategies, as well as the overall management of
strategies. In addition, they describe where real options value comes from
and why in certain cases the true value of a project may be less than its op-
tion value.

Industry Leaders Embracing Real Options

This section details actual corporate cases and Fortune 500 firms embracing
this new valuation concept. Firms highlighted include General Motors, HP-
Compag, Boeing, and AT&T. Included are consulting success stories of how
these firms have looked at business decisions through the lens of real op-
tions. More industry cases are provided in the appendixes.

What the Experts Are Saying

This section details what the experts are saying in terms of the uses of real
options, including quotations from the Wall Street Journal, Business Week,
Harvard Business Review, CFO, and others. The upshot is that firms are fast
embracing this new hot valuation approach, which has the potential of being
the next new business breakthrough. It would seem apparent from the brief
excerpts that real options analysis is not simply a financial %dd but the
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GCHAPTER 2: TRADITIONAL VALUATION
APPROACHES

Introduction

This chapter introduces the pitfalls of using only traditional discounted cash
flow analysis and how a real options process framework captures the strate-
gic valuation a traditional approach cannot. A brief overview of traditional
analyses includes the income approach, the market approach, and the cost
approach. In addition, the chapter focuses on the issues and concerns regard-
ing the discounted cash flow analysis. The chapter concludes with two appen-
dixes discussing the details of financial statement analysis and the calculation
of an appropriate discount rate.

The Traditional Views

Traditional analysis includes the income, cost, and market approaches, which
involve using forecast profit and loss statements, comparable multiples, ratio
analysis, common sizing, and so forth. The traditional approaches view risk
and return on investment in a very static view. However, not all uncertainty
is risk, and not all risk is bad. Real options view capital investments in terms
of a dynamic approach and view upside risk as an ally that can be capital-
ized on.

Practical Issues Using Traditional
Valuation Methodologies

This section highlights the pitfalls of the three fundamental approaches: in-
come approach, cost approach, and market approach. These pitfalls include
the incorrect use of discount rates, risk-free rates, terminal value calculations,
and others.

CHAPTER 3: REAL OPTIONS ANALYSIS

Introduction

This chapter introduces the fundamental concepts of real options through sev-
eral simple examples showing why an options framework provides much bet-
ter insights than traditional valuation approaches do. In order to compare the
results from different approaches, a simplified example is presented, starting
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with traditional analyses. The example continues with the application of
Monte Carlo simulation and ends with the use of real options analysis.

The Fundamental Essence of Real Options

This section starts with the example of how an analyst would perform a fi-
nancial analysis for the purpose of project selection. It then shows the virtues
of using simulation to capture uncertainties rather than using simple single-
point estimates. The analysis is complicated further by using active and pas-
sive waiting strategies. Finally, this section demonstrates how real options
can be applied to more accurately assess a project’s value by better defining
the variables underlying a project and its potential value creation.

The Basics of Real Options, and a Simplified
Example of Real Options in Action

A simple example illustrates the power of real options through the execution
of an option to wait. The option to defer the execution of a second-phase
clinical trial until receiving updated news of market demand adds value to a
pharmaceutical research and development division’s project in general. The
example uses a simple discounted cash flow model to make the case.

Advanced Approaches to Real Options, and Why
Are Real Options Important?

These two sections show the importance of looking at decision-making
processes as a series of dynamic options and describe the types of generic
options that exist in corporate investment strategies. In addition, several
advanced real options techniques are introduced. Some of these techniques—
for example, the use of binomial lattices, Monte Carlo simulation, partial-
differential equations, and closed-form exotic options analysis—are also dis-
cussed briefly.

Comparing Traditional Approaches with
Real Options

A protracted example is provided on a sample business case. The example
starts from a simple static discounted cash flow analysis and proceeds with
sensitivity analysis. Then an additional layer of sophistication is introduced,
with the application of Monte Carlo simulation. Finally, real options analy-
sis is applied to the problem. The results are then compared, starting with a
static discounted cash flow approach, to the simulation results, as well as to
the real options results.
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CHAPTER 4: THE REAL OPTIONS PROCESS

Introduction and Critical Steps in Performing Real
Options Analysis

This chapter introduces the eight phases in a real options process framework
as developed by the author. The first phase starts with the qualification of
projects through management screening, which weeds out the projects that
management wishes to evaluate. The second phase starts with the construc-
tion of a traditional discounted cash flow model under the base case condi-
tion. Next, Monte Carlo simulation is applied, and the results are in turn
inserted directly into the real options analysis. This phase covers the identi-
fication of strategic options that exist for a particular project under review.
Based on the type of problem framed, the relevant real options models are
chosen and executed. Depending on the number of projects as well as
management-set constraints, portfolio optimization is performed. The effi-
cient allocation of resources is the outcome of this analysis. The next phase
involves creating reports and explaining to management the analytical re-
sults. This step is critical in that an analytical process is only as good as its
expositional ease. Finally, the last phase involves updating the analysis over
time. Real options analysis adds tremendous value to projects with uncer-
tainty, but when uncertainty becomes resolved through the passage of time,
old assumptions and forecasts have now become historical facts. Therefore,
existing models must be updated to reflect new facts and data. This contin-
ual improvement and monitoring is vital in making clear, precise, and de-
finitive decisions over time.

CHAPTER 5: REAL OPTIONS, FINANCIAL
OPTIONS, MONTE CARLO SIMULATION,
AND OPTIMIZATION

Introduction

This chapter explains the differences between financial options and real op-
tions by first describing the fundamentals of financial options theory. The
chapter then goes into the importance of Monte Carlo simulation for finan-
cial analysis and ends with the application of portfolio optimization and the
efficient allocation of resources.

Real Options versus Financial Options

This section details the basics of financial options and how they relate to real
options. For instance, the underlying asset in most real options analysis is
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nontradable—that is, there usually exists no liquid market for the asset or
project in question. Nonetheless, there exist many similarities between the
two, and the underlying analytics of financial options may be applicable,
with a few exceptions and modifications.

Monte Garlo Simulation

How are simulation techniques important in real options analysis? This dis-
cussion explains how certain key variables are obtained through the use of
Monte Carlo simulation. An example depicts the error of means and why
simulation should be used when uncertainty abounds. Further examples show
the different strategies that would have been executed otherwise without the
use of real options.

CHAPTER 6: BEHIND THE SCENES

This chapter introduces the reader to some common types of real options an-
alytics. The two main methods introduced are closed-form differential equa-
tions and binomial lattices through the use of risk-neutral probabilities. The
advantages and disadvantages of each are discussed in detail. In addition, the
theoretical underpinnings surrounding the binomial equations are demysti-
fied here, leading the reader through a set of simplified discussions on how
certain binomial equations are derived.

Real Options: Behind the Scenes

This section introduces the reader to the use of binomial models and closed-
form solutions, which are the two mainstream approaches, used in solving
real options problems. The section also discusses the advantages and disad-
vantages of using each approach, while demonstrating that the results from
both methods approach each other at the limit.

Binomial Lattices

The binomial lattice is introduced here, complete with the application of risk-
neutral probabilities, time-steps, and jump sizes.

The Look and Feel of Uncertainty, and a
Firm's Real Options Provide Value in the
Face of Uncertainty

The idea of uncertainty in cash flow predictions is presented in these two
sections. With the use of Monte Carlo simulation, these uncertainties can be
easily captured and quantified. However, if there are strategic options in
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these projects, there may be value in these uncertainties, which Monte Carlo
simulation alone cannot capture. The upside and downside options can be
better quantified using real options analysis.

Binomial Lattices as a Discrete Simulation of
Uncertainty, Risk versus Uncertainty, Hard
Options versus Soft Options, and Granularity
Leads to Precision

The cone of uncertainty is explained through the idea of increasing uncer-
tainty over time. This cone of uncertainty can be captured using stochastic
simulation methods, such as the use of Brownian Motions. Then a discus-
sion contrasting risk and uncertainty is provided and the linkage among
risk, uncertainty, volatility, probability, and discount rate is further ex-
plored. The section continues with the discussion of how a binomial lattice
approximates the simulation of stochastic processes. Indeed, the binomial
lattice is a discrete simulation and, at the limit, approaches the results gen-
erated using continuous stochastic process simulation techniques, which can
be solved using closed-form approaches.

An Intuitive Look at Binomial Equations, and
Frolicking in a Risk-Neutral World

These sections look at the binomial equations and how they can be ex-
plained intuitively, without the need for difficult and high-level mathemat-
ics. The equations include the use of up and down jump-steps as well as the
use of risk-neutral probabilities.

CHAPTER 7: REAL OPTIONS MODELS

This chapter looks at the different types of strategic real options, providing
a step-by-step methodology in solving these options. The options covered in-
clude the options to abandon, expand, contract, and choose. In addition,
compound options, changing strike options, changing volatility options, and
sequential compound options are discussed. These basic option types pro-
vide the building blocks in analyzing more complex real options as discussed
in the following chapters, including building more sophisticated real op-
tions models such as those included in the CD-ROM.

These different real options sections walk the reader through calculating
by hand the various real options models. These models include using the
binomial lattices and closed-form approaches. Examples of options calcu-
lated include the option to expand, contract, barrier, salvage, switch, and
so on. There are also several technical appendixes on the derivation of the
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appropriate volatility estimate, a discussion of the Black-Scholes model, the
use of path-dependent valuation using market-replicating portfolios, an ex-
ample static binomial model, sensitivity models, reality checks, and trinomial
lattices.

GCHAPTER 8: ADDITIONAL ISSUES IN
REAL OPTIONS

The additional issues in real options are discussed here, including exit and
abandonment options, timing options, compound options, and the use of
stochastic optimization. A discussion of the inappropriate use of decision
trees is also included. Three technical appendixes follow the chapter, pro-
viding insights into different stochastic processes, differential equations, and
a barrage of exotic options models.

The options models start from a simple European Black-Scholes model
and extend to Black-Scholes with dividend outflows, chooser options, com-
plex options, compound options, floating strike options, fixed strike options,
forward start options, jump-diffusion options, spread options, discrete time
switch options, and two correlated asset options. The approaches for estimat-
ing American-type options are also discussed.

CHAPTER 9: INTRODUCTION TO THE REAL
OPTIONS VALUATION'S SUPER LATTICE SOLVER
SOFTWARE AND RISK SIMULATOR SOFTWARE

This chapter introduces the readers to the author’s Super Lattice Solver (SLS)
and Risk Simulator software, trial versions of which are included in the
CD-ROM.

The SLS software comprises several different modules. The Single Asset
SLS is used for solving simple to complex and customized American, Bermu-
dan, and European financial and real options with one underlying asset. The
types of options solved include among others, the abandonment, American,
barrier, Bermudan, chooser, contraction, deferment, European, expansion,
and plain-vanilla options. The Multiple Asset SLS is used for solving options
with multiple underlying assets and/or multiple-phased options. The types of
options solved include multistaged sequential compound options, complex
custom sequential options, multiple asset simultaneous compound options,
options with multiple underlying assets, and switching options. The Multi-
nomial SLS is used to solve mean-reverting options using trinomial lattices,
jump-diffusion options using quadranomial lattices, and dual-asset rainbow
options using pentanomial lattices. Excel-based SLS functions are also
shown, where real options can be solved in existing Excel models (this allows
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Monte Carlo simulation and optimization to be run on the results), as well
as sample audit sheets generated by the SLS software.

The author’s own Risk Simulator software is also introduced. This soft-
ware is used to perform Monte Carlo simulation, time-series forecasting,
and stochastic optimization within the Excel spreadsheet environment. Step-
by-step getting started illustrations are presented in this chapter. It is also used
for running regular simulations, nonparametric simulations, multivariate re-
gressions, nonlinear extrapolations, stochastic processes, time-series analy-
sis, sensitivity analysis, tornado and spider charts, bootstrapping, hypothesis
testing, and many other methodologies.

CHAPTER 10: REAL OPTIONS VALUATION
APPLICATION CASES

In this chapter, American, Bermudan, European, and Customized options are
introduced and solved using the author’s Super Lattice Solver software. The
types of options introduced and solved include:

® American, European, Bermudan, and Customized Abandonment Options

® American, European, Bermudan, and Customized Contraction Options

® American, European, Bermudan, and Customized Expansion Options

m Contraction, Expansion, and Abandonment Options

® American, European, Bermudan, and Customized Call and Put Options

m Exotic Chooser Options

® Multiphased Complex Sequential Compound Options

® Multiphased Simultaneous Compound Options

u Mean-Reverting Options

® Jump-Diffusion Options

® Dual-Asset Rainbow Options

m Barrier Options (Upper, Lower, and Double-Barrier Options)

m Employee Stock Options (with Suboptimal Exercise Behavior Multiples,
Forfeitures, Vesting, and Blackout Periods)

Other topics discussed include optimal timing and optimal trigger values in
real options: path dependent, path independent, mutually exclusive, nonmu-
tually exclusive, and complex nested options, as well as dominant and dom-
inated options. Additional student exercises are included in this chapter.

CHAPTER 11: REAL OPTIONS CASE STUDIES

This chapter provides many solved case studies in various industries using
real options and financial options. The cases are solved by illustrating the
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use of real options framing exercises. The cases show how the real or finan-
cial options are first framed in strategy trees and then solved using the Super
Lattice Solver software. The cases introduced in this chapter include:

® High-tech manufacturing: Build or buy decision with real options.

m Financial options: Convertible warrants with a vesting period and put
protection.

m Pharmaceutical development: Value of perfect information and trigger
values.

m Oil and gas: Farm outs, options to defer, and value of information.

m Valuing employee stock options under 2004 FAS 123.

m Integrated risk modeling: Applying simulation, forcasting, and opti-
mization on real options.

m Biopharmaceutical industry: Valuing strategic manufacturing flexibility.

® Real estate: Alternative use and development.

m United States Navy: Strategic flexibility in mission control centers.

CHAPTER 12: RESULTS INTERPRETATION
AND PRESENTATION

This chapter walks the reader through the results and sample reports that
should be generated by a real options analyst. The chapter includes informa-
tion to help the reader in interpreting the results and being able to bring the
results from the analyst’s desktop to the desktop of the CEO.

How do you broach the subject of real options to management? What
are the links between traditional approaches versus more advanced analytical
approaches? Will management “bet the farm” based on a single number gen-
erated through a fancy mathematical model the analyst can’t even interpret?
This chapter provides a step-by-step methodology in presenting and explain-
ing to management a highly complicated set of analyses through the eyes of
an analyst. Complete with graphical displays, charts, tables, and process
flows, this chapter provides a veritable cookbook of sorts, for the exposition
of the results from a real options analysis.

The results interpretation and presentation proceed through 13 steps.
The steps include comparing real options analysis with traditional financial
analysis, comparing their similarities, and highlighting their differences.
Next, the presentation shows where traditional analyses end and where the
new analytics begin, through a simple-to-understand structured evaluation
process. Then the results summary is presented, where different projects with
different sized investments and returns are compared. This comparison is
made on the basis of returns as well as risk structures. The final prognosis is
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presented as an impact to the bottom line for the company as a consequence
of selecting different projects. A critical success factor analysis is also pre-
sented, together with its corresponding sensitivity analyses. A Monte Carlo
simulation analysis is then presented as a means of identifying and measur-
ing risks inherent in the analysis. Finally, the assumptions and results stem-
ming from a real options analysis are discussed, as are its corresponding risk
analyses.
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A New Paradigm?

INTRODUCTION

What are real options, how are companies using real options, what types of
options exist, why are real options important, who uses real options, where
are real options most appropriately used, and what are the experts saying
about real options? This chapter attempts to demystify the concepts of real
options and starts by reviewing the basics of real options as a new paradigm
shift in the way of thinking about and evaluating projects. The chapter then
reviews several business cases in different industries and situations involving
pharmaceutical, oil and gas, manufacturing, IT infrastructure, venture cap-
ital, Internet start-ups, and e-business initiatives. The chapter then concludes
with some industry “war stories” on using real options as well as a summary
of what the experts are saying in journal publications and the popular press.

A PARADIGM SHIFT

In the past, corporate investment decisions were cut-and-dried. Buy a new ma-
chine that is more efficient, make more products costing a certain amount,
and if the benefits outweigh the costs, execute the investment. Hire a larger
pool of sales associates, expand the current geographical area, and if the
marginal increase in forecast sales revenues exceeds the additional salary and
implementation costs, start hiring. Need a new manufacturing plant? Show
that the construction costs can be recouped quickly and easily by the increase
in revenues it will generate through new and improved products, and the ini-
tiative is approved.

However, real-life business conditions are a lot more complicated. Your
firm decides to go with an e-commerce strategy, but multiple strategic paths
exist. Which path do you choose? What are the options that you have? If you
choose the wrong path, how do you get back on the right track? How do you
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value and prioritize the paths that exist? You are a venture capital firm with
multiple business plans to consider. How do you value a start-up firm with no
proven track record? How do you structure a mutually beneficial investment
deal? What is the optimal timing to a second or third round of financing?

Real options are useful not only in valuing a firm through its strategic
business options but also as a strategic business tool in capital investment de-
cisions. For instance, should a firm invest millions in a new e-commerce ini-
tiative? How does a firm choose among several seemingly cashless, costly,
and unprofitable information technology infrastructure projects? Should a
firm indulge its billions in a risky research and development initiative? The
consequences of a wrong decision can be disastrous or even terminal for cer-
tain firms. In a traditional discounted cash flow (DCF) model, these questions
cannot be answered with any certainty. In fact, some of the answers gener-
ated through the use of the traditional discounted cash flow model are flawed
because the model assumes a static, one-time decision-making process while
the real options approach takes into consideration the strategic managerial
options certain projects create under uncertainty and management’s flexibil-
ity in exercising or abandoning these options at different points in time, when
the level of uncertainty has decreased or has become known over time.

The real options approach incorporates a learning model such that man-
agement makes better and more informed strategic decisions when some lev-
els of uncertainty are resolved through the passage of time. The discounted
cash flow analysis assumes a static investment decision, and assumes that
strategic decisions are made initially with no recourse to choose other path-
ways or options in the future. To create a good analogy of real options, vi-
sualize it as a strategic road map of long and winding roads with multiple
perilous turns and forks along the way. Imagine the intrinsic and extrinsic
value of having such a strategic road map or global positioning system when
navigating through unfamiliar territory, as well as having road signs at every
turn to guide you in making the best and most informed driving decisions.
This is the essence of real options.

Business conditions are fraught with uncertainty and risks. These un-
certainties hold with them valuable information. When uncertainty
becomes resolved through the passage of time, actions, and events,
managers can make the appropriate midcourse corrections through a
change in business decisions and strategies. Real options incorporate
this learning model, akin to having a strategic road map, while tra-
ditional analyses that neglect this managerial flexibility will grossly
undervalue certain projects and strategies.
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The answer to evaluating such projects lies in real options analysis, which
can be used in a variety of settings, including pharmaceutical drug develop-
ment, oil and gas exploration and production, manufacturing, e-business,
start-up valuation, venture capital investment, IT infrastructure, research and
development, mergers and acquisitions, e-commerce and e-business, intellec-
tual capital development, technology development, facility expansion, busi-
ness project prioritization, enterprise-wide risk management, business unit
capital budgeting, licenses, contracts, intangible asset valuation, and the like.
The following section illustrates some business cases and how real options can
assist in identifying and capturing additional strategic value for a firm.

EXPANSION AND COMPOUND OPTIONS:
THE CASE OF THE OPERATING SYSTEM

You are the Chief Technology Officer of a large multinational corporation,
and you know that your firm’s operating systems are antiquated and re-
quire an upgrade, say to the new Microsoft Windows XP or Server 2003 se-
ries. You arrange a meeting with the CEQO, letting him in on the situation.
The CEO quips back immediately, saying that he’ll support your initiative
if you can prove to him that the monetary benefits outweigh the costs of
implementation—a simple and logical request. You immediately arrange
for a demonstration of the new operating system, and the highly technical
experts from Microsoft provide you and your boss a marvelous presenta-
tion of the system’s capabilities and value-added enhancements that took in
excess of a few billion dollars and several years to develop. The system even
fixes itself in times of dire circumstances and is overall more reliable and sta-
ble than its predecessors. You get more excited by the minute and have made
up your mind to get the much-needed product upgrade. There is still one hur-
dle, the financial hurdle, to prove not only that the new system provides a bet-
ter operating environment but also that the plan of action is financially
sound. Granted, the more efficient and sophisticated system will make your
boss’s secretary a much happier person and hence more productive. Then
again, so will an extra week’s worth of vacation and a bigger bonus check,
both of which are a lot cheaper and easier to implement. The new system will
not help your sales force sell more products and generate higher revenues be-
cause the firm looks state-of-the-art only if a customer questions what version
of Windows operating system you are using—hardly an issue that will arise
during a sales call. Then again, when has using the latest software ever as-
sisted in closing a deal, especially when you are a contract global-freight and
logistics solutions provider?

You lose sleep over the next few days pondering the issue, and you finally
decide to assemble a task force made up of some of your top IT personnel. The
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six of you sit in a room considering the same issues and trying to brainstorm
a few really good arguments. You link up the value-added propositions pro-
vided in the Microsoft technician’s presentation and come up with a series
of potential cost reduction drivers. Principally, the self-preservation and self-
fixing functionality will mean less technical assistance and help-desk calls,
freeing up resources and perhaps leading to the need for fewer IT people on
staff. Your mind races through some quick figures, you feel your heart pound-
ing faster, and you see a light at the end of the tunnel. Finally you will have
your long-awaited operating system, and all your headaches will go away.
Wait—not only does it reduce the help-desk time, but also it increases effi-
ciency because employees will no longer have to call or hold for technical
assistance.

Your team spends the next few days scouring through mountains of
data on help-desk calls and issues—thank God for good record-keeping and
relational databases. Looking for issues that could potentially become ob-
solete with the new system, you find that at least 20 percent of your help-
desk calls could be eliminated by having the new system in place because it
is more stable, is capable of self-fixing these critical issues, can troubleshoot
internal hardware conflicts, and so forth. Besides, doesn’t employee morale
count? Satisfied with your analysis, you approach the CEO and show him
your findings.

Impressed with your charts and analytical rigor in such a short time
frame, he asks several quick questions and points out several key issues. The
cost reduction in technical assistance is irrelevant because you need these
people to install and configure the new system. The start-up cost and learn-
ing curve might be steep, and employees may initially have a tough time ad-
justing to the new operating environment—help-desk calls may actually
increase in the near future, albeit slowing down in time. But the firm’s mis-
sion has always been to cultivate its employees and not to fire them need-
lessly. Besides, there are five people on staff at the help desk, and a 20 percent
reduction means one less full-time employee out of 5,000 in the entire firm—
hardly a cost reduction strategy! As for the boss’s secretary’s productivity,
you noticed two first-class air tickets to Maui on his desk, and you’re pretty
sure one of them is for her. Your mind races with alternate possibilities—in-
cluding taking a trip to Hawaii with a high-powered digital-zoom camera
but deciding against it on your way out. He notices your wandering eyes and
tries to change the subject. You still have not sufficiently persuaded your boss
on getting the new operating system, and you are up a tree and out on a limb.
Thoughts of going shopping for a camera haunt you for the rest of the day.

Sound familiar? Firms wrestle with similar decisions daily, and vendors
wrestling with how to make their products more marketable have to first ad-
dress this financial and strategic issue. Imagine you’re the sales director for
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Microsoft, or any software and hardware vendor for that matter. How do
you close a sale like this?

Performing a series of simple traditional analyses using a discounted
cash flow methodology or economic justification based on traditional analy-
ses will fail miserably, as we have seen above. The quantifiable financial ben-
efits do not exceed the high implementation costs. How do you justify and
correctly value such seemingly cashless and cash-flow draining projects? The
answer lies in real options. Instead of being myopic and focusing on current
savings, the implementation of large-scale servers or operating systems will
generate future strategic options for the firm. That is, having the servers and
system in place provides you a springboard to a second-, third-, or fourth-
phase IT implementation. That is, having a powerful connected system gives
you the technical feasibility to pursue online collaboration, global data ac-
cess, videoconferencing, digital signatures, encryption security, remote in-
stallations, document recovery, and the like, which would be impossible to
do without it.

An expansion option provides management the right and ability to ex-
pand into different markets, products, and strategies or to expand its
current operations under the right conditions. A chooser option implies
that management has the flexibility to choose among several strategies,
including the option to expand, abapdon, switch, contract, and so
forth. A sequential compound option means that the execution and
value of future strategic options depend on previous options in se-
quence of execution.

Hence, the value of upgrading to a new system provides the firm an ex-
pansion option, which is the right and ability, but not the obligation, to invest
and pursue some of these value-added technologies. Some of these tech-
nologies such as security enhancements and global data access can be highly
valuable to your global freight company’s supply chain management. You may
further delineate certain features into groups of options to execute at the same
time—that is, create a series of sequential compound options where the suc-
cess of one group of initiatives depends on the success of another in sequence,
similar to a stage-gate investment process.

Notice that using an extrapolation of the traditional analytic approaches
would be inappropriate here because all these implementation possibilities
are simply options that a senior manager has, and not guaranteed execution
by any means. When you view the whole strategic picture, value is created and
identified where there wasn’t any before, thereby making you able to clearly
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justify financially your plans for the upgrade. You would be well on your way
to getting your new operating system installed.

EXPANSION OPTIONS:
THE CASE OF THE E-BUSINESS INITIATIVE

The e-business boom has been upon us for a few years now, and finally the
investment bank you work for has decided to join the Internet age. You get
a decree from the powers that be to come up with a solid e-commerce ini-
tiative. The CEO calls you into his office and spends an hour expounding on
the wisdom of bringing the firm closer to the electronic Web. After hours of
meetings, you are tasked with performing a feasibility analysis, choosing the
right strategy, and valuing the wisdom of going e-commerce. Well, it sounds
simple enough, or so you think.

The next two weeks are spent with boardroom meetings, conference calls
with e-commerce consulting firms, and bottles of Alka-Seltzer. Being a newly
endowed expert on the e-business strategies after spending two weeks in Tahiti
on a supposedly world-renowned e-commerce crash course, you realize you
really still know nothing. One thing is for certain: the Internet has revolution-
ized the way businesses are run. The traditional Sun Tzu business environment
of “know thy enemy and know thyself and in a hundred battles you will be
victorious” hadn’t met the Internet. The competitive playing field has been lev-
eled, and your immediate competitors are no longer the biggest threat. The
biggest threat is globalization, when new competitors halfway around the
world crawl out of the woodwork and take half of your market share just
because they have a fancy Web site capable of attracting, diverting, and re-
taining Web traffic, and capable of taking orders around the world, and you
don’t. Perhaps the CEO’s right; it’s a do-or-die scenario. When a 12-year-old
girl can transform her parents’ fledgling trinket store into an overnight success
by going to the Internet, technology seems to be the biggest foe of all. You ei-
ther ride the technological wave or are swept under.

Convinced of the necessity of e-commerce and the strong desire to
keep your job, you come up with a strategic game plan. You look at the
e-commerce options you have and try to ascertain the correct path to tra-
verse, knowing very well that if you pick the wrong one, it may be ultimately
disastrous, for you and your firm, in that particular order. In between
updating your curriculum vitae, you decide to spend some time pondering
the issues. You realize that there are a large number of options in going
e-commerce, and you have decided on several potential pathways to con-
sider as they are most appropriate to the firm’s core business.

Do we simply create a static Web site with nice graphics, text explaining
what we do, and perhaps a nice little map showing where we are located and
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the hours of availability, and get fired? Do we perhaps go a little further and
provide traditional banking services on the Web? Perhaps a way for our cus-
tomers to access their accounts, pay bills, trade stocks, apply for loans, and
perhaps get some free stock advice or free giveaways and pop-up ads to divert
traffic on the Web? Perhaps we can take it to the extreme and use state-of-
the-art technology to enable items like digital television access, live continuous
streaming technology, equity trading on personal digital assistants and cellu-
lar phones, interaction with and direct access to floor specialists and traders
on the New York Stock Exchange for the larger clients, and all the while
using servers in Enron-like offshore tax havens. The potentials are endless.

You suddenly feel queasy, and the inkling of impending doom. What
about competition? Ameritrade and a dozen other online trading firms cur-
rently exist. Most major banks are already on the Web, and they provide the
same services. What makes us so special? Then again, if we do not follow the
other players, we may be left out in the cold. Perhaps there are some ways
to differentiate our services. Perhaps some sort of geographical expansion;
after all, the Internet is global, so why shouldn’t we be? What about market
penetration effects and strategies, country risk analysis, legislative and reg-
ulatory risks? What if the strategy is unsuccessful? What will happen then?
Competitive effects are unpredictable. The threats of new entrants and low
barriers to entry may elicit even more competitors than you currently have.
Is the firm ready to play in the big leagues and fight with the virtual offshore
banking services? Globalization—what an ugly word it is right about now.
What about new technology: Do we keep spending every time something
new comes out? What about market share, market penetration, positioning,
and being first to market with a new and exciting product? What about fu-
ture growth opportunities, e-traffic management, and portal security? The
lists go on and on. Perhaps you should take a middle ground, striking an al-
liance with established investment banking firms with the applicable IT in-
frastructure already in place. Why build when you can buy? You reach for
your Alka-Seltzer and realize you need something a lot stronger.

How do you prioritize these potential strategies, perform a financial and
strategic feasibility analysis, and make the right decision? Will the firm sur-
vive if we go down the wrong path? If we find out we are on the wrong path,
can we navigate our way back to the right one? What options can we create
to enable this? Which of these strategies is optimal? Upon identifying what
these strategies are, including all their downstream expansion options, you
can then value each of these strategic pathways. The identification, valuation,
prioritization, and selection of strategic projects are where real options analy-
sis can provide great insights and value. Each project initiative should not be
viewed in its current state. Instead, all downstream opportunities should
be viewed and considered as well. Otherwise, wrong decisions may be made
because only projects with immediate value will be chosen, while projects that
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carry with them great future potential are abandoned simply because man-
agement is setting its sights on the short term.

EXPANSION AND SEQUENTIAL OPTIONS:
THE CASE OF THE PHARMACEUTICAL R&D

Being the chief chemist of a small pharmaceutical firm that is thinking of de-
veloping a certain drug useful in gene therapy, you have the responsibility to
determine the right biochemical compounds to create. Understanding very
well that the future of the firm rests on pursuing and developing the right
portfolio of drugs, you take your evaluation task rather seriously. Currently,
the firm’s management is uncertain whether to proceed with developing a
group of compounds and is also uncertain regarding the drug development’s
financial feasibility. From historical data and personal experience, you un-
derstand that development “home runs” are few and far between. As a mat-
ter of fact, you realize that less than 5 percent of all compounds developed are
superstars. However, if the right compounds are chosen, the firm will own
several valuable patents and bolster its chances of receiving future rounds of
funding. Armed with that future expectation, you evaluate each potential
compound with care and patience.

For example, one of the compounds you are currently evaluating is called
Creatosine. Management knows that Creatosine, when fully developed, can
be taken orally, but has the potential to be directly injected into the blood-
stream, which increases its effectiveness. As there is great uncertainty in the
development of Creatosine, management decides to develop the oral version
for now and wait for a period of several years before deciding on investing
additional funds to develop the injectable version. Thus, management has
created an expansion option—that is, the option but not the obligation to
expand Creatosine into an injectable version at any time between now and
several years. The firm thus creates no value in developing the injection ver-
sion after that time period. By incorporating real options strategy, your firm
has mitigated its risks in developing the drug into both an oral and injectable
form at initiation. By waiting, scientific and market risks become resolved
through the passage of time, and your firm can then decide whether to pursue
the second injectable phase. This risk-hedging phenomenon is common in
financial options and is applicable here for real options.

However, there are other drug compounds to analyze as well. You go
through the list with a fine-tooth comb and realize that you must evaluate
each drug by not only its biochemical efficacies, but also by its financial
feasibility. Given the firm’s current capital structure, you would need to not
only value, prioritize, and select the right compounds, but also find the op-
timal portfolio mix of compounds, subject to budget, timing, and risk con-
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straints. On top of that, you would have to value your firm as a whole in terms
of a portfolio of strategic options. The firm’s value lies not only in its forecast
revenues less its costs subject to time valuation of money but also in all the cur-
rent research and development initiatives under way, where a single home run
will double or triple the firm’s valuation. These so-called future growth op-
tions, which are essentially growth opportunities that the firm has, are highly
valuable. These growth options are simply expansion options because your
firm owns the right infrastructure, resources, and technology to pursue these
future opportunities but not the obligation to do so unless both internal re-
search and external market conditions are amenable.

Another approach you decide to use is to create a strategic development
road map, knowing that every drug under development has to go through
multiple phases. At each phase, depending on the research results, management
can decide to continue its development to the next phase or abandon it as-
suming it doesn’t meet certain prespecified criteria. That is, management has
the option to choose whether a certain compound will continue to the next
stage. Certain drugs in the initial phases go through a sequential compound
option, where the success of the third phase, for example, depends on the suc-
cess of the second phase, which in turn depends on the success of the first
phase in the stage-gate drug development cycle. Valuing such sequences of
options using a traditional approach of taking expected values with respect
to the probabilities of success is highly dubious and incorrect. The valuation
will be incorrect at best and highly misleading at worst, driving management
to select the wrong mix of compounds at the wrong time.

EXPANSION AND SWITCHING OPTIONS:
THE CASE OF THE OIL AND GAS EXPLORATION
AND PRODUCTION

The oil and gas industry is fraught with strategic options problems because
oil and gas exploration and production involves significant amounts of risk
and uncertainty. For example, when drilling for oil, the reservoir properties,
fluidic properties, trap size and geometry, porosity, seal containment, oil and
gas in place, expulsion force, losses due to migration, development costs, and
so forth are all unknowns. How then is a reservoir engineer going to recom-
mend to management the value of a particular drill site? Let’s explore some
of the more frequent real options problems encountered in this industry.
Being a fresh M.B.A. graduate from a top finance program, you are hired
by a second-tier independent oil and gas firm, and your first task is to value
several primary and secondary reservoir recovery wells. You are called into
your boss’s office, and she requests you to do an independent financial analy-
sis on a few production wells. You were given a stack of technical engineering
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documents to review. After spending a fortnight scouring through several
books on the fundamentals of the oil and gas industry, you finally have some
basic understanding of the intricacies of what a secondary recovery well is.
Needing desperately to impress your superiors, you decide to investigate a
little further into some new analytics for solving these types of recovery-well
problems.

Based on your incomplete understanding of the problem, you begin to
explore all the possibilities and come to the conclusion that the best analyt-
ics to use may be the application of a Monte Carlo simulation and real options
analysis. Instead of simply coming up with the value of the project, you decide
to also identify where value can be added to the projects by incorporating
strategic real optionality.

Suppose that the problem you are analyzing is a primary drilling site that
has its own natural energy source, complete with its gas cap on one side and
a water drive on the other. These energy sources maintain a high upward
pressure on the oil reservoir to increase the ease of drilling and, therefore, the
site’s productivity. However, knowing that the level of energy may not be sus-
tainable for a long time and its efficacy is unknown currently, you recognize
that one of the strategies is to create an expansion option to drill a second-
ary recovery well near the primary site. Instead of drilling, you can use this
well to inject water or gas into the ground, thereby increasing the upward
pressure and keeping the reservoir productive. Building this secondary well
is an option and not an obligation for the next few years.

The first recommendation seems to make sense given that the geological
structure and reservoir size are difficult to estimate. Yet these are not the
only important considerations. The price of oil in the market is also some-
thing that fluctuates dramatically and should be considered. Assuming that
the price of oil is a major factor in management’s decisions, your second rec-
ommendation includes separating the project into two stages. The first stage
is to drill multiple wells in the primary reservoir, which will eventually max-
imize on its productivity. At that time a second phase can be implemented
through smaller satellite reservoirs in the surrounding areas that are available
for drilling but are separated from the primary reservoir by geological faults.
This second stage is also an expansion option on the first; when the price of
oil increases, the firm is then able to set up new rigs over the satellite reservoirs,
drill, and complete these wells. Then, using the latest technology in subsurface
robotics, the secondary wells can be tied back into the primary platform,
thereby increasing and expanding the productivity of the primary well by
some expansion factor. Obviously, although this is a strategic option that the
firm has, the firm does not have the obligation to drill secondary wells un-
less the market price of oil is favorable enough. Using some basic intuition,
you plug some numbers into your models and create the optimal oil price
levels such that secondary drillings are profitable. However, given your brief
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conversation with your boss and your highly uncertain career future, you de-
cide to dig into the strategy a little more.

Perhaps the company already has several producing wells at the reservoir.
If that is so, the analysis should be tweaked such that instead of being an ex-
pansion option by drilling more wells, the firm can retrofit these existing
wells in strategic locations from producers into injectors, creating a switch-
ing option. Instead of drilling more wells, the company can use the existing
wells to inject gas or water into the surrounding geological areas in the hopes
that this will increase the energy source, forcing the oil to surface at a higher
rate. Obviously, these secondary production wells should be switched into
injectors when the recovery rate of the secondary wells is relatively low and
the marginal benefits of the added productivity on primary wells far outstrip
the retrofit costs. In addition, some of the deep-sea drilling platforms that
are to be built in the near future can be made into expansion options, where
slightly larger platforms are built at some additional cost (premium paid to
create this option), such that if oil prices are optimally high, the flexible ca-
pacity inherent in this larger platform can be executed to boost production.

Finally, depending on the situation involved, you can also create a se-
quential compound option for the reservoir. That is, the firm can segregate its
activities into different phases. Specifically, we can delineate the strategic
option into four phases. Phases I to III are exploration wells, and Phase IV is
a development well.

Phase I: Start by performing seismic surveys to get information on
the structures of subsurface reservoirs (the costs incurred
include shooting the survey, processing data, mapping,
etc.).

Phase II:  If autoclines and large structures are found, drill an
exploration well; if not, then abandon now.

Phase III:  If the exploration well succeeds industrially or
commercially (evaluated on factors such as cost, water
depth, oil price, rock, reservoir, and fluid properties), drill
more delineation or “step out” wells to define the reservoir.

Phase IV:  If the reservoir is productive enough, commit more money
for full development (platform building, setting platform,
drilling development wells).

A switching option provides the right and ability but not the obliga-
tion to switch among different sets of business operating conditions, in-
cluding different technologies, markets, or products.
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ABANDONMENT OPTIONS:
THE CASE OF THE MANUFACTURER

You work for a midsized hardware manufacturing firm located in the heart-
land of America. Having recently attended a corporate finance seminar on
real options, you set out to determine whether you can put some of your new-
found knowledge to good use within the company. Currently, your firm pur-
chases powerful laser-guided robotic fabrication tools that run into tens and
even hundreds of millions of dollars each. These tools have to be specially
ordered more than a year in advance, due to their unique and advanced spec-
ifications. They break down easily, and if any one of the three machines that
your firm owns breaks down, it may be disastrous because part of the man-
ufacturing division may have to be shut down temporarily for a period ex-
ceeding a year. So, is it always desirable to have at least one fabrication tool
under order at all times, just as a precaution? A major problem arises when
the newly ordered tool arrives, but the three remaining ones are fully func-
tional and require no replacement. The firm has simply lost millions of dol-
lars. In retrospect, certainly having a backup machine sitting idle that costs
millions of dollars is not optimal. However, millions can also be lost if indeed
a tool breaks down and a replacement is a year away. The question is, what
do you do, and how can real options be used in this case, both as a strategic
decision-making tool and as a valuation model?

Using traditional analysis, you come to a dead end, as the tool’s break-
down has never been consistent and the ordered parts never arrive on sched-
ule. Turning to real options, you decide to create a strategic option with the
vendor. Instead of having to wait more than a year before a new machine ar-
rives, while during that time not knowing when your existing machines will
break down, you decide to create a mutually agreeable contract. Your firm
decides to put up a certain amount of money and to enter into a contractual
agreement whereby the vendor will put you on its preferred list. This cuts
down delivery time from one year to two months. If your firm does not re-
quire the equipment, you will have to pay a penalty exit fee equivalent to a cer-
tain percentage of the machine’s dollar value amount, within a specified period,
on a ratcheted scale, with different exit penalties at different exit periods. In
essence, you have created an abandonment option whereby your firm has
the right not to purchase the equipment should circumstances force your hand,
but hedging yourself to obtain the machine at a moment’s notice should
there be a need. The price of the option’s premium is the contractual price
paid for such an arrangement. The savings come in the form of not having to
close down part of your plant and losing revenues. By incorporating real op-
tions insights into the problem, the firm saves millions and ends up with the
optimal decision.
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EXPANSION AND BARRIER OPTIONS:
THE CASE OF THE LOST VENTURE CAPITALIST

You work in a venture capital firm and are in charge of the selection of strate-
gic business plans and performing financial analysis on their respective feasi-
bility and operational viability. The firm gets more than a thousand business
plans a year, and your boss does not have the time to go through each of them
in detail and relies on you to sniff out the ones with the maximum potential in
the least amount of time. Besides, the winning plans do not wait for money.
They often have money chasing after them. Having been in the field of venture
capital funding for 10 years and having survived the bursting of the dot-com
bubble, your judgment is highly valued in the firm, and you are more often
than not comfortable with the decisions made. However, with the changing
economic and competitive landscape, even seemingly bad ideas may turn into
the next IPO success story. Given the opportunity of significant investment re-
turns, the money lost on bad ideas is a necessary evil in not losing out on the
next eBay or Yahoo! just because the CEQO is not a brilliant business plan au-
thor. Your qualitative judgment may still be valid, but the question is what
next? What do you do after you’ve selected your top 100 candidates? How do
you efficiently allocate the firm’s capital to minimize risk and maximize re-
turn? Picking the right firms the wrong way only gets you so far, especially
when banking on start-ups hoping for new technological breakthroughs. A di-
versified portfolio of firms is always prudent, but a diversified portfolio of the
right firms is much better. Prioritizing, ranking, and coming up with a solid fi-
nancing structure for funding start-ups is tricky business, especially when tra-
ditional valuation methodologies do not work.

The new economy provides many challenges for the corporate decision
maker. Market equity value of a firm now depends on expectations and
anticipation of future opportunities in novel technologies rather than on a
traditional bricks-and-mortar environment. This shift in the underlying
fundamentals from tangible goods to technological innovation has created
an issue in valuing the firm. Even the face of the intangibles created by tech-
nological innovation has changed. In most cases, a significant portion of a
firm’s value or its strategic investment options is derived from the firm’s in-
tangibles. Intangibles generally refer to elements in a business that augment
the revenue-generating process but do not themselves have a physical or
monetary appearance while still holding significant value to the firm. Intan-
gibles may range from more traditional items like intellectual property, prop-
erty rights, patents, branding, and trademarks to a new generation of
so-called e-intangibles created in the new economy.

Examples of this new generation of e-intangibles include items like mar-
keting intangibles, process and product technologies, trade dress, customer
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loyalty, branding, proprietary software, speed, search engine efficiency, on-
line data catalogs, server efficiency, traffic control and diversion, streaming
technology, content, experience, collaborative filtering, universal-resource-
locator-naming conventions, hubs, Web page hits, imprints, blogs, and com-
munity relationships. New entries in the e-commerce economy over the past
few years include the financial sector (bank wires, online bill payments, on-
line investing), health care sector (cross-border medical teaching), publication
and retail auctions (e-pocket books, Web magazines, Web papers, eBay,
Web-Van, Auto-Web). The new trend seems to continue, and new start-ups
emerge in scores by the minute to include sophisticated and complex struc-
tures like online cross-border banking services, virtual offshore banks, cross-
border medical diagnostic imaging, and online-server game playing. However,
other less sophisticated e-business strategies have also been booming of late,
including service-based Web sites, which provide a supposedly value-added
service at no charge to consumers, such as online greeting cards and online
e-invitations. Lower barriers to entry and significant threat of new entrants
and substitution effects characterize these strategies.

Even using fairly well-known models like the discounted cash flow analy-
sis is insufficient to value these types of firms. For instance, as a potential ven-
ture capitalist, how do you go about identifying the intangibles and intellectual
property created when traditional financial theory is insufficient to justify or
warrant such outrageous price-to-earnings multiples? Trying to get on the
bandwagon in initial public offerings with large capital gains is always a good
investment strategy, but randomly investing in start-ups with little to no fun-
damental justification of potential future profitability is a whole other issue.
Perhaps there is a fundamental shift in the way the economy works today or
is expected to work in the future as compared to the last decade. Whether
there is indeed an irrational exuberance in the economy, or whether there is
perhaps a shift in the fundamentals, we need a newer, more accurate, and so-
phisticated method of quantifying the value of such intangibles.

How do you identify, value, select, prioritize, justify, optimize, time, and
manage large corporate investment decisions with high levels of uncertainty
such that when a decision is made, the investment becomes irreversible? How
do you value and select among several start-up firms to determine whether
they are ideal venture candidates, and how do you create an optimal financ-
ing structure? These types of cashless return investments provide no immedi-
ate increase in revenues, and the savings are only marginal compared to their
costs. How do you justify such outrageous market equity prices?

A barrier option means that the execution and value of a strategic op-
tion depend on either breaching or not breaching an artificial barrier.
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There must be a better way to value these investment opportunities.
Having read press releases by Motley Fool on Credit Suisse First Boston, and
how the firm used real options to value stocks of different companies, you
begin looking into the possibilities of applying real options yourself. The start-
up firm has significant value even when its cash flow situation is hardly
something to be desired because the firm has strategic growth options. That
is, a particular start-up may have some technology that may seem untested
today, but it has the option to expand into the marketplace quickly and ef-
fortlessly should the technology prove to be highly desirable in the near future.
Obviously the firm has the right to also pursue other ancillary technologies
but only if the market conditions are conducive. The venture firm can capi-
talize on this option to expand by hedging itself with multiple investments
within a venture portfolio. The firm can also create strategic value through
setting up contractual agreements with a barrier option (and option to defer)
where for the promise of seed financing, the venture firm has the right of first
refusal, but not the obligation, to invest in a second or third round should the
start-up achieve certain management-set goals or barriers. The cost of this bar-
rier option is seed financing, which is akin to the premium paid on a stock op-
tion. Should the option be in-the-money, the option will be executed through
second- and third-round financing. By obtaining this strategic option, the ven-
ture firm has locked itself into a guaranteed favorable position should the
start-up be highly successful, similar to the characteristics of a financial call op-
tion of unlimited upside potential. At the same time, the venture firm has
hedged itself against missing the opportunity with limited downside propor-
tional to the expenditure of a minimal amount of seed financing.

When venture capital firms value a group of companies, they should con-
sider all the potential upsides available to these companies. These strategic
options may very well prove valuable. A venture firm can also hedge itself
through the use of barrier-type or deferment options. The venture firm should
then go through a process of portfolio optimization analysis to decide what
proportion of its funds should be disseminated to each of the chosen firms.
This portfolio optimization analysis will maximize returns and minimize the
risks borne by the venture firm on a portfolio level subject to budget or other
constraints.

GCOMPOUND EXPANSION OPTIONS:
THE CASE OF THE INTERNET START-UP

In contrast, one can look at the start-up entrepreneur. How do you obtain
venture funding, and how do you position the firm such that it is more at-
tractive to the potential investor? Your core competency is in developing soft-
ware or Web-enabled vehicles on the Internet, not financial valuation. How
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do you then structure the financing agreements such that your firm will be
more attractive yet at the same time the agreements are not detrimental to
your operations, strategic plans, or worse, your personal equity stake?
What are your projected revenues and costs? How do you project these val-
ues when you haven’t even started your business yet? Are you undervaluing
your firm and its potential such that an unscrupulous venture firm will cap-
italize on your lack of sophistication and take a larger piece of the pie for
itself> What are your strategic alternatives when you are up and running, and
how do you know it’s optimal for you to proceed with the next phase of
your business plan?

All these questions can be answered and valued through a real options
framework. Knowing what strategic options your firm has is significant be-
cause this value-added insight not only provides the firm an overall strategic
road map but also increases its value. The real option that may exist in this
case is something akin to a compound expansion option. For example, the
firm can expand its product and service offerings by branching out into an-
cillary technologies or different applications, or expanding into different ver-
tical markets. However, these expansions will most certainly occur in stages,
and the progression from one stage to another depends heavily on the suc-
cess of the previous stages.

THE REAL OPTIONS SOLUTION

Simply defined, real options is a systematic approach and integrated solu-
tion using financial theory, economic analysis, management science, deci-
sion sciences, statistics, and econometric modeling in applying options
theory in valuing real physical assets, as opposed to financial assets, in a dy-
namic and uncertain business environment where business decisions are
flexible in the context of strategic capital investment decision making, valu-
ing investment opportunities, and project capital expenditures. Real op-
tions are crucial in:

m Identifying different corporate investment decision pathways or proj-
ects that management can navigate given the highly uncertain business
conditions;

m Valuing each strategic decision pathway and what it represents in terms
of financial viability and feasibility;

m Prioritizing these pathways or projects based on a series of qualitative
and quantitative metrics;

m Optimizing the value of your strategic investment decisions by evaluat-
ing different decision paths under certain conditions or using a different
sequence of pathways to lead to the optimal strategy;
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Real options are useful for identifying, understanding, valuing, pri-
oritizing, selecting, timing, optimizing, and managing strategic busi-
ness and capital allocation decisions.

m Timing the effective execution of your investments and finding the op-
timal trigger values and cost or revenue drivers; and

B Managing existing or developing new optionalities and strategic deci-
sion pathways for future opportunities.

ISSUES TO CONSIDER

Strategic options do have significant intrinsic value, but this value is only re-
alized when management decides to execute the strategies. Real options the-
ory assumes that management is logical and competent and that it acts in the
best interests of the company and its shareholders through the maximization
of wealth and minimization of risk of losses. For example, suppose a firm
owns the rights to a piece of land that fluctuates dramatically in price. An an-
alyst calculates the volatility of prices and recommends that management
retain ownership for a specified time period, where within this period there
is a good chance that the price of real estate will triple. Therefore, manage-
ment owns a call option, an option to wait and defer sale for a particular
time period. The value of the real estate is therefore higher than the value that
is based on today’s sale price. The difference is simply this option to wait.
However, the value of the real estate will not command the higher value if
prices do triple but management decides not to execute the option to sell. In
that case, the price of real estate goes back to its original levels after the spec-
ified period and then management finally relinquishes its rights.

Strategic optionality value can only be obtained if the option is exe-
cuted; otherwise, all the options in the world are worthless.

Was the analyst right or wrong? What was the true value of the piece of
land? Should it have been valued at its explicit value on a deterministic basis
where you know what the price of land is right now and, therefore, this is its
value; or should it include some type of optionality where there is a good prob-
ability that the price of land could triple in value and, hence, the piece of land
is truly worth more than it is now and should therefore be valued accordingly?



32 THEORY

The latter is the real options view. The additional strategic optionality value can
only be obtained if the option is executed; otherwise, all the options in the
world are worthless. This idea of explicit versus implicit value becomes highly
significant when management’s compensation is tied directly to the actual per-
formance of particular projects or strategies.

To further illustrate this point, suppose the price of the land in the mar-
ket is currently $10 million. Further, suppose that the market is highly lig-
uid and volatile, and that the firm can easily sell it off at a moment’s notice
within the next five years, the same amount of time the firm owns the rights
to the land. If there is a 50 percent chance the price will increase to $15 mil-
lion and a 50 percent chance it will decrease to $5 million within this time
period, is the property worth an expected value of $10 million? If prices rise
to $15 million, management should be competent and rational enough to
execute the option and sell that piece of land immediately to capture the ad-
ditional $5 million premium. However, if management acts inappropriately
or decides to hold off selling in the hopes that prices will rise even further,
the property value may eventually drop back down to $5 million. Now, how
much is this property really worth? What if there happens to be an aban-
donment option? Suppose there is a perfect counterparty to this transaction
who decides to enter into a contractual agreement whereby for a contractual
fee, the counterparty agrees to purchase the property for $10 million within
the next five years, regardless of the market price and executable at the
whim of the firm that owns the property. Effectively, a safety net has been
created whereby the minimum floor value of the property has been set at
$10 million (less the fee paid). That is, there is a limited downside but an un-
limited upside, as the firm can always sell the property at market price if it
exceeds the floor value. Hence, this strategic abandonment option has in-
creased the value of the property significantly and hedged its downside risks.
Logically, with this abandonment option in place, the value of the land with
the option is definitely worth more than $10 million after having such a
safety net or downside insurance. The question is how much this insurance
is worth and only real options analysis can answer this.

INDUSTRY LEADERS EMBRACING REAL OPTIONS

Industries using real options as a tool for strategic decision making started
with oil and gas as well as mining companies, and later expanded into utilities,
biotechnology, pharmaceuticals, and now into telecommunications, high-tech,
and across all industries. Following are some examples of how real options
have been or should be used in different industries.
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Automobile and Manufacturing Industry In automobile manufacturing, General
Motors (GM) applies real options to create switching options in producing its
new series of autos. This is essentially the option to use a cheaper resource over
a given period of time. GM holds excess raw materials and has multiple global
vendors for similar materials with excess contractual obligations above what
it projects as necessary. The excess contractual cost is outweighed by the sig-
nificant savings of switching vendors when a certain raw material becomes too
expensive in a particular region of the world. By spending the additional money
in contracting with vendors as well as meeting their minimum purchase re-
quirements, GM has essentially paid the premium on purchasing a switching
option. This is important especially when the price of raw materials fluctuates
significantly in different regions around the world. Having an option here
provides the holder a hedging vehicle against pricing risks.

Gomputer Industry In the computer industry, HP-Compaq used to forecast
sales of printers in foreign countries months in advance. It then configured,
assembled, and shipped the highly specific printers to these countries. How-
ever, given that demand changes rapidly and forecast figures are seldom cor-
rect, the preconfigured printers usually suffer a higher inventory holding cost
or the cost of technological obsolescence. HP-Compaq can create an option
to wait and defer making any decisions too early through building assembly
plants in these foreign countries. Parts can then be shipped and assembled in
specific configurations when demand is known, possibly weeks in advance
rather than months in advance. These parts can be shipped anywhere in the
world and assembled in any configuration necessary, while excess parts are
interchangeable across different countries. The premium paid on this option
is building the assembly plants, and the upside potential is the savings from
not making wrong demand forecasts.

Airline Industry In the airline industry, Boeing spends billions of dollars and
several years to decide if a certain aircraft model should even be built. Should
the wrong model be tested in this elaborate strategy, Boeing’s competitors
may gain a competitive advantage relatively quickly. Because so many tech-
nical, engineering, market, and financial uncertainties are involved in the
decision-making process, Boeing can conceivably create an option to choose
through parallel development of multiple plane designs simultaneously, know-
ing very well the increased cost of developing multiple designs simultaneously
with the sole purpose of eliminating all but one in the near future. The added
cost is the premium paid on the option. However, Boeing will be able to decide
which models to abandon or continue when these uncertainties and risks be-
come known over time. Eventually, all the models will be eliminated save one.
This way, the company can hedge itself against making the wrong initial
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decision and benefit from the knowledge gained through multiple parallel
development initiatives.

0il and Gas Industry In the oil and gas industry, companies spend millions of
dollars to refurbish their refineries and add new technology to create an
option to switch their mix of outputs among heating oil, diesel, and other
petrochemicals as a final product, using real options as a means of making
capital and investment decisions. This option allows the refinery to switch its
final output to one that is more profitable based on prevailing market prices,
to capture the demand and price cyclicality in the market.

Telecommunications Industry In the telecommunications industry, in the past,
companies like Sprint and AT&T installed more fiber-optic cable and other
telecommunications infrastructure than other companies in order to create
a growth option in the future by providing a secure and extensive network,
and to create a high barrier to entry, providing a first-to-market advantage.
Imagine having to justify to the board of directors the need to spend billions
of dollars on infrastructure that will not be used for years to come. Without
the use of real options, this would have been impossible to justify.

Utilities Industry In the utilities industry, firms have created an option to ex-
ecute and an option to switch by installing cheap-to-build, inefficient energy
generator peaker plants only to be used when electricity prices are high and
to shut down when prices are low. The price of electricity tends to remain
constant until it hits a certain capacity utilization trigger level, when prices
shoot up significantly. Although this occurs infrequently, the possibility still
exists, and by having a cheap standby plant, the firm has created the option
to turn on the switch whenever it becomes necessary, to capture this upside
price fluctuation.

Real Estate Industry  In the real estate arena, leaving land undeveloped cre-
ates an option to develop at a later date at a more lucrative profit level. How-
ever, what is the optimal wait time and the optimal trigger price to maximize
returns? In theory, one can wait for an infinite amount of time, and real op-
tions provide the solution for the optimal timing and price-trigger value.

Pharmaceutical Research and Development Industry In pharmaceutical research
and development initiatives, real options can be used to justify the large in-
vestments in what seems to be cashless and unprofitable under the discounted
cash flow method but actually creates compound expansion options in the fu-
ture. Under the myopic lenses of a traditional discounted cash flow analysis,
the high initial investment of, say, a billion dollars in research and develop-
ment may return a highly uncertain projected few million dollars over the
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next few years. Management will conclude under a net-present-value analy-
sis that the project is not financially feasible. However, a cursory look at the
industry indicates that research and development is performed everywhere.
Hence, management must see an intrinsic strategic value in research and de-
velopment. How is this intrinsic strategic value quantified? A real options ap-
proach would optimally time and spread the billion-dollar initial investment
into a multiple-stage investment structure. At each stage, management has an
option to wait and see what happens as well as the option to abandon or the
option to expand into the subsequent stages. The ability to defer cost and
proceed only if situations are permissible creates value for the investment.

High-Tech and e-Business Industry In e-business strategies, real options can be
used to prioritize different e-commerce initiatives and to justify those large
initial investments that have an uncertain future. Real options can be used in
e-commerce to create incremental investment stages, options to abandon, and
other future growth options, compared to a large one-time investment (in-
vest a little now, wait and see before investing more).

Mergers and Acquisition In valuing a firm for acquisition, you should not
only consider the revenues and cash flows generated from the firm’s oper-
ations but also the strategic options that come with the firm. For instance,
if the acquired firm does not operate up to expectations, an abandonment
option can be executed where it can be sold for its intellectual property
and other tangible assets. If the firm is highly successful, it can be spun off
into other industries and verticals or new products and services can be even-
tually developed through the execution of an expansion option. In fact, in
mergers and acquisition, several strategic options exist. For instance, a
firm acquires other entities to enlarge its existing portfolio of products or
geographic location, to obtain new technology (expansion option), or to di-
vide the acquisition into many smaller pieces and sell them off as in the
case of a corporate raider (abandonment option); or it merges to form a
larger organization due to certain synergies and immediately lays off many
of its employees (contraction option). If the seller does not value its real op-
tions, it may be leaving money on the negotiation table. If the buyer does not
value these strategic options, it is undervaluing a potentially highly lucrative
acquisition target.

All these cases where the high cost of implementation with no apparent pay-
back in the near future seems foolish and incomprehensible in the traditional
discounted cash flow sense are fully justified in the real options sense when
taking into account the strategic options the practice creates for the future,
the uncertainty of the future operating environment, and management’s flex-
ibility in making the right choices at the appropriate time.
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WHAT THE EXPERTS ARE SAYING

The trend in the market is quickly approaching the acceptance of real op-
tions, as can be seen from the following sample publication excerpts.!

According to a Harvard Business Review article (December 2004):

Companies that rely solely on discounted cash flow (DCF) analysis un-
derestimate the value of their projects and may fail to invest enough in
uncertain but highly promising opportunities. Far from being a replace-
ment for DCF analysis, real options are an essential complement, and a
project’s total value should encompass both. DCF captures a base esti-
mate of value; real options take into account the potential for big gains.

According to another Harvard Business Review article (March 2004):

The complexity of real options can be eased through the use of a bino-
mial valuation model. Many of the problems with real options analysis
stem from the use of the Black-Scholes-Merton model, which isn’t suited
to real options. Binomial models, by contrast, are simpler mathemati-
cally, and you can tinker with binomial model until it closely reflects the
project you wish to value.

According to an article in Bloomberg Wealth Manager (November 2001):

Real options provide a powerful way of thinking and I can’t think of
any analytical framework that has been of more use to me in the past 15
years that I've been in this business.

According to a Wall Street Journal article (February 2000):

Investors who, after its IPO in 1997, valued only Amazon.com’s
prospects as a book business would have concluded that the stock was
significantly overpriced and missed the subsequent extraordinary price
appreciation. Though assessing the value of real options is challenging,
without doing it an investor has no basis for deciding whether the cur-
rent stock price incorporates a reasonable premium for real options or
whether the shares are simply overvalued.

CFO Europe (July/August 1999) cites the importance of real options in that:

[A] lot of companies have been brainwashed into doing their valuations
on a one-scenario discounted cash flow basis . . . and sometimes our rec-
ommendations are not what intuition would suggest, and that’s where
the real surprises come from—and with real options, you can tell exactly
where they came from.
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According to a Business Week article (June 1999):

The real options revolution in decision making is the next big thing to
sell to clients and has the potential to be the next major business break-
through. Doing this analysis has provided a lot of intuition you didn’t
have in the past . . . and as it takes hold, it’s clear that a new generation
of business analysts will be schooled in options thinking. Silicon Valley
is fast embracing the concepts of real options analytics, in its tradition
of fail fast so that other options may be sought after.

In Products Financiers (April 1999):

Real options are a new and advanced technique that handles uncertainty
much better than traditional evaluation methods. Since many managers
feel that uncertainty is the most serious issue they have to face, there is
no doubt that this method will have a bright future as any industry faces
uncertainty in its investment strategies.

A Harvard Business Review article (September/October 1998) hits home:

Unfortunately, the financial tool most widely relied on to estimate the
value of a strategy is the discounted cash flow which assumes that we
will follow a predetermined plan regardless of how events unfold. A bet-
ter approach to valuation would incorporate both the uncertainty in-
herent in business and the active decision making required for a strategy
to succeed. It would belp executives to think strategically on their feet
by capturing the value of doing just that— of managing actively rather
than passively and real options can deliver that extra insight.

This book provides a novel approach in applying real options to answer-
ing these issues and more. In particular, a real options framework is presented.
It takes into account managerial flexibility in adapting to ever-changing strate-
gic, corporate, economic, and financial environments over time as well as the
fact that in the real business world, opportunities and uncertainty exist and are
dynamic in nature. This book provides a real options process framework to
identify, justify, time, prioritize, value, and manage corporate investment
strategies under uncertainty in the context of applying real options.

The recommendations, strategies, and methodologies outlined in this
book are not meant to replace traditional discounted cash flow analysis but
to complement it when the situation and the need arise. The entire analysis
could be done, or parts of it could be adapted to a more traditional approach.
In essence, the process methodology outlined starts with traditional analyses
and continues with value- and insight-adding analytics, including Monte Carlo
simulation, real option analysis, and portfolio optimization. The real options
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approach outlined is not the only viable alternative nor will it provide a set
of infallible results. However, if utilized correctly with the traditional ap-
proaches, it may lead to a set of more robust, accurate, insightful, and
plausible results. The insights generated through real options analytics pro-
vide significant value in understanding a project’s true strategic value.

CRITICISMS, CAVEATS, AND MISUNDERSTANDINGS
IN REAL OPTIONS

Before embarking on a real options analysis, analysts should be aware of
several caveats. First, the following five requirements need to be satisfied be-
fore a real options analysis can be run:

B A financial model must exist. Real options analysis requires the use of
an existing discounted cash flow model, as real options build on the ex-
isting tried-and-true approaches of current financial modeling tech-
niques. If a model does not exist, it means that strategic decisions have
already been made and no financial justifications are required, and hence,
there is no need for financial modeling or real options analysis.

u Uncertainties must exist. Otherwise the option value is worthless. If
everything is known for certain in advance, then a discounted cash flow
model is sufficient. In fact, when volatility (a measure of risk and uncer-
tainty) is zero, everything is certain, the real options value is zero, and the
total strategic value of the project or asset reverts to the net present value
in a discounted cash flow model.

m Uncertainties must affect decisions when the firm is actively managing
the project and these uncertainties must affect the results of the financial
model. These uncertainties will then become risks, and real options can
be used to hedge the downside risk and take advantage of the upside
uncertainties.

B Management must have strategic flexibility or options to make mid-
course corrections when actively managing the projects. Otherwise, do
not apply real options analysis when there are no options or management
flexibility to value.

B Management must be smart enough and credible enough to execute the
options when it becomes optimal to do so. Otherwise, all the options in
the world are useless unless they are executed appropriately, at the right
time, and under the right conditions.

There are also several criticisms against real options analysis. It is vital
that the analyst understands what they are, and what the appropriate responses
are, prior to applying real options.
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® Real options analysis is merely an academic exercise and is not practi-
cal in actual business applications. Nothing is further from the truth.
Although it was true in the past that real options analysis was merely ac-
ademic, however, many corporations have begun to embrace and apply
real options analysis. Also, its concepts are very pragmatic and with the
use of the Real Options Valuation’s Super Lattice Solver software, even
very difficult problems can be easily solved, as will become evident later
in this book. This book and software have helped bring the theoretical a
lot closer to practice. Firms are using it and universities are teaching it.
It is only a matter of time before real options analysis becomes part of
normal financial analysis.

® Real options analysis is just another way to bump up and incorrectly
increase the value of a project to get it justified. ~Again, nothing is fur-
ther from the truth. If a project has significant strategic options but the
analyst does not value them appropriately, he or she is leaving money on
the table. In fact, the analyst will be incorrectly undervaluing the project
or asset. Also, one of the requirements foregoing states that one should
never run real options analysis unless strategic options and flexibility
exist. If they do not exist, then the option value is zero, but if they do exist,
neglecting their valuation will grossly and significantly underestimate
the project or asset’s value.

® Real options analysis ends up choosing the bighest risk projects as the
higher the volatility, the higher the option value. This criticism is also
incorrect. The option value is zero if no options exist. However, if a
project is highly risky and has high volatility, then real options analysis
becomes more important. That is, if a project is strategic but is risky,
then you better incorporate, create, integrate, or obtain strategic real op-
tions to reduce and hedge the downside risk and take advantage of the
upside uncertainties. Therefore, this argument is actually heading in the
wrong direction. It is not that real options will overinflate a project’s
value, but for risky projects, you should create or obtain real options to
reduce the risk and increase the upside, thereby increasing the total strate-
gic value of the project. Also, although an option value is always greater
than or equal to zero (as will be seen in later chapters), sometimes the
cost to obtain certain options may exceed its benefit, making the entire
strategic value of the option negative, although the option value itself is
always zero or positive.

So, it is incorrect to say that real options will always increase the value
of a project or only risky projects are selected. People who make these crit-
icisms do not truly understand how real options work. However, having said
that, real options analysis is just another financial analysis tool, and the old
axiom of “garbage in garbage out” still holds. But if care and due diligence are
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exercised, the analytical process and results can provide highly valuable in-
sights. In fact, this author believes that 50 percent (rounded, of course) of the
challenge and value of real options analysis is simply thinking about it. Un-
derstanding that you have options, or obtaining options to hedge the risks
and take advantage of the upside, and to think in terms of strategic options,
is half the battle. Another 25 percent of the value comes from actually run-
ning the analysis and obtaining the results. The final 25 percent of the value
comes from being able to explain it to management, to your clients, and to
yourself, such that the results become actionable intelligence and not merely
another set of numbers.

SUMMARY

Real options analysis simply defined is the application of financial options, de-
cision sciences, corporate finance, and statistics to evaluate real or physical as-
sets as opposed to financial assets. Industry analysts, experts, and academics
all agree that real options provide significant insights to project evaluation
that traditional types of analysis like the discounted cash flow approach can-
not provide. Sometimes the simple task of thinking and framing the problem
within a real options context is highly valuable. The simple types of real op-
tions discussed include expansion, abandonment, contraction, chooser, com-
pound, barrier, growth, switching, and sequential compound options.

CHAPTER 1 QUESTIONS

1. What are some of the characteristics of a project or a firm that is best
suited for a real options analysis?
2. Define the following:

a. Compound option
b. Barrier option
c. Expansion option

3. If management is not credible in acting appropriately through profit-
maximizing behavior, are strategic real options still worth anything?
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The Timken Company
on Real Options in R&D
and Manufacturing

The following is contributed by Kenneth P. English, Director of R¢&¢D Emerg-
ing Technology, The Timken Company, Canton, Ohio. The Timken Com-
pany is a public company traded on the NYSE, and is a leading international
manufacturer of highly engineered bearings, alloy and specialty steels and
components, as well as related products and services. With operations in 24
countries, the company employs about 18,700 associates worldwide.

The Timken Company’s journey toward real options analysis began in
1996 when the corporation made the decision to focus on profitably grow-
ing the business by 10 percent per year. We started with the creation of a
gate-type process to identify and evaluate project opportunities that would
generate the necessary profits for our growth requirements. During the nu-
merous gate meetings, the process actually highlighted gaps in our process
more than the anticipated growth project opportunities we had expected.
The first group of gaps identified during the process was the lack of ex-
pertise in project management and market research; the second was poorly
defined and documented product and corporate strategies; and, finally, fi-
nancial evaluation capabilities. The gaps identified in project management,
market research, and strategy were addressed over the following years by
recruiting various consulting firms to assist with those disciplines. The fi-
nancial evaluation gap was initially addressed with the assistance of our in-
ternal financial department by applying the same financial modeling tools
used when the corporation built new physical plants. These models focused
on NPV, payback, and project terminal value. Project terminal value caused
considerable controversy with the reviewers.

As these parallel consulting efforts continued for months/years, the cor-
poration became more adroit at the terminology of product development. As

4
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the refinements and understanding of these other areas evolved, it was real-
ized that the financial model used on the gate templates was not adequate for
the dynamic uncertain environment of product development. At this time,
Monte Carlo simulation was being used in benchmarked growth industries
to determine the range of risk for projects. Our first response was to acquire
books on the subject of Monte Carlo simulation.

The financial department was familiar with the model but was not pre-
pared to assist with implementation of it in the product development envi-
ronment. After some time and frustration, the Risk Simulator software
product for Monte Carlo simulation at a company named Real Options Val-
uation was discovered. The timing was excellent, since the corporation was
reviewing a high-profile project that contained hidden ranges of risk. The sim-
ulation product was immediately purchased and inserted into our gate tem-
plates to address the issue of risk. Within weeks, some of our corporate
leadership was looking at risk with a much different perspective. Previously,
we identified risk and noted it, then proceeded on a product development
path without sensitivity to the dynamic ramifications of the risk. The Monte
Carlo simulation put focus on the importance of the corporation’s gaps in
detailed market research and the absence of aligned product and corporate
strategy for Horizon II projects. The software made the complex and time-
consuming financial formulas into a quick, user-friendly tool to assist with the
difficult task of defining the range of risk and promoting timely decision
making. It was painfully obvious that the real object of successful product
development was to enable speedy decisions to either fund or kill projects
and not the joy of being comfortable with seeing the old favorite projects
and connected potential acquisitions lingering on with several lives.

Two and a half years into the quest for profitable growth, we identified
the next barrier to our success. That barrier was the absence of a project port-
folio process. The major issue with any initially installed gate-oriented process
in a previous incremental corporate culture structure is that the gatekeepers
only have the opportunity to evaluate the presented projects against other
projects presented during that particular gate meeting. This situation exerts
pressure to find a tool/process that will allow the gatekeepers to prioritize all
the product and project efforts of the corporation to give maximum return on
investment. The concept of projects in a portfolio becomes very important
to the corporate allocation of funds. Portfolio management was a very for-
eign concept to us because our corporate orientation to projects was based
on NPV and payback and not mitigation of risk, maximizing efforts, and
cost of capital. We responded to the corporate learning piece of the puzzle
by creating a manual portfolio simulation exercise to sensitize our executives
and gatekeepers to how they looked at projects and their synergies. It also
broadened their view of the significant impact that strategic fit, selection,
and timing has with respect to financial success.
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With the success of the portfolio simulation, we were then sensitized to
the issue of the corporate benefit of cultivating a mindset of timing projects
(timing options) in a way that could maximize the impact to our growth re-
quirements. The writings regarding real options began appearing in the busi-
ness literature, magazines, and seminars, but the application was initially
geared toward the practice of financial options. Again, we were put in a posi-
tion of educating ourselves (the change agents) and subsequently the corpo-
rate culture to a different way of thinking. We searched the available real
options course selection taught at the university level. The universities were
interested in real options but did not have coursework in place to conduct
educational sessions.

The Timken Company established the R&D Emerging Technology De-
partment in June of 2002. The focus of the department is to scan the world for
dispersed technologies that are not part of the present corporate portfolio.
These technologies contain varying degrees of risk, which require an even
higher level of evaluation techniques to take advantage of numerous options.

Publicity from Dr. Johnathan Mun about the upcoming real options soft-
ware and the lectures and workshops on real options appeared to be the best
vehicle to take us to the next level of portfolio decision making. We contacted
Dr. Mun to give a real options lecture and workshop to bring our financial de-
partment and executives up to speed. The time spent was very useful, and the
culture is starting to communicate in real option terms. We at The Timken
Company are anticipating that the new software for real options from Real
Options Valuation, Inc., will get us closer to the target of achieving more con-
fident corporate project decisions, resulting in assisting us in our goal of sus-
tained profitability and growth.
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Schiumberger on Real
Options in 0il and Gas

The following is contributed by William Bailey, Ph.D., Senior Research Engi-
neer at Schlumberger— Doll Research, Ridgefield, Connecticut. The company
is involved in global technology services, with corporate offices in New York,
Paris, and The Hague. Schlumberger bas more than 80,000 employees, repre-
senting 140 nationalities, working in nearly 100 countries. The company con-
sists of two business segments: Schlumberger Oilfield Services, which includes
Schlumberger Network Solutions, and Schlumberger-Sema. Schlumberger Oil-
field Services supplies products, services, and technical solutions to the oil and
gas exploration and production (E&'P) industry, with Schlumberger Network
Solutions providing information technology (IT) connectivity and security so-
lutions to both the E&P industry and a range of other markets. Schlumberger-
Sema provides IT consulting, systems integration, managed services, and
related products to the oil and gas, telecommunications, energy and utilities,
finance, transport, and public-sector markets.

Long gone are those heady days in the petroleum industry when a pith-
helmeted geologist could point to an uninspiring rock outcrop, declare con-
fidently “drill here,” and then find an oil field the size of a small country.
Over the past 30 years, however, the situation for the oil industry has become
very different indeed. As we search to replenish our ever-decreasing hydro-
carbon supplies, oil explorationists now find themselves looking in some of
the most inaccessible parts of the globe and in some of the deepest and most
inhospitable seas. What could have been achieved in the past with a relatively
small investment is now only attainable at a considerably greater cost. In
other words, developing an oil and/or gas field nowadays is subject to con-
siderably larger investments in time, money, and technology. Furthermore,
such large investments are almost always based on imperfect, scant, and un-
certain information. It is no accident, therefore, that when teaching the con-
cepts of risk analysis, many authors cite the oil industry as a classic case in
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point. This is not by accident for few other industries exhibit such a range
of uncertainty and possible downside exposure (in technical, financial, envi-
ronmental, and human terms). Indeed this industry is almost ubiquitous when
demonstrating risk analysis concepts.

Consequently real options have a natural place in the oil industry man-
agement decision-making process. The process and discipline in such an analy-
sis captures the presence of uncertainty, limited information, and the existence
of different—but valid—development scenarios. The fact that petroleum in-
dustry management are faced with multimillion (sometimes billion) dollar de-
cisions is nothing new. Such people are used to making critical decisions on a
mixture of limited information, experience, and best judgment. What is new
is that we now have a coherent tool and framework that explicitly considers
uncertainty and available choices in a timely and effective manner.

This short appendix is intended to provide just a brief glimpse into the
types of applications real options have been used for in the petroleum in-
dustry. To guide the reader unfamiliar with the finer points of the oil and gas
industry, it may be prudent to outline the basic process in an “average” pe-
troleum development. In so doing, the reasons why the oil industry is deemed
such a prime example for use of real options (and risk analysis in general)
will become clear.

In the 1959 film of Jules Verne’s 1864 novel Journey to the Center of the
Earth, James Mason and others found themselves sailing on a dark sea in a
mighty cavern many miles down in the earth’s crust. This was, of course, just
science fiction, not science fact. Unfortunately it is still a common misconcep-
tion that oil is found in such caverns forming black lakes deep beneath our
feet. While such images may be romantic and wishful, reality is far more in-
tricate. For the most part, oil (and gas) is found in the microscopic pore spaces
present between individual grains making up the rock. For example, hydro-
carbon-bearing sandstone may have porosity levels (the percentage of pore
space in the rock) of about 15 percent. This means that if all the pore space in
the rock is full of oil, then 15 percent of the total rock volume contains oil. Of
course, things are not as simple as that because water and other minerals serve
to reduce the available pore volume.! As oil and gas are liquid, they will flow.
Unless the rock itself provides some form of seal (or trap) to contain these flu-
ids, over time they will simply seep to the surface and be lost. (Azerbaijan has
some good examples of such seepage with whole hillsides being awash with
flame from seeping gas for as long as recorded history.) So not only do we
need a rock that contains oil (or gas) but also the oil (or gas) must be trapped
somehow, ready for exploitation. For a readable and well-informed summary
of petroleum geology, refer to Selley (1998).2

Extraction of oil (and/or gas) from a virgin field is undertaken in typi-
cally four stages: exploration and appraisal; development; production; and
abandonment. This is a gross simplification, of course, for within each phase
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there are a multitude of technical, commercial, and operational considera-
tions. Keeping one eye on real options, in their crudest form these phases can
be briefly described as follows:

m Exploration and Appraisal. Seismic data is obtained and a picture of
the subsurface is then revealed. Coupled with geological knowledge, ex-
perience, and observations, it is then possible to generate a more detailed
depiction of a possible hydrocarbon-bearing zone. Seismic data cannot
tell what fluids are present in the rock, so an exploratory well needs to
be drilled, and from this, one is then able to better establish the nature,
size, and type of an oil and gas field.

Exploration and Appraisal Phase—Where Real Options Come In. The
decision maker has numerous options available to him/her, which may
include:

m Extent of investment needed in acquiring seismic data. For exam-
ple should one invest in 3D seismic studies that provide greater
resolution but are significantly more expensive? Should 4D (time-
dependent) seismic data be considered? While advanced seismic
data (and interpretation) certainly provides improved representa-
tion of the subsurface environment, one needs to assess whether it
is worthwhile investing in this information. Will it reduce uncer-
tainty concerning the size and nature of the reservoir sufficiently to
pay off the investment?

m Given inherent uncertainty about the reserves, if possible, how much
should the company share in the risk (extent of contract partnership)?

m How many exploration wells are appropriate to properly delineate
the field? One, two, five, or more?

m Development. Once sufficient data has been obtained (from seismic
or exploratory wells) to make an educated judgment on the size of the
prize, we enter into the development phase. Here we decide on the most
commercially viable way for exploiting this new resource by engineer-
ing the number (and type) of producing wells, process facilities, and
transportation. We must also establish if, at all, any pressure support
is necessary.’

Development Phase—Where Real Options Come In. This phase is
where decision makers face possibly the greatest number of valid alter-
natives. Valid development options include:
® How many wells should be drilled? Where should they be located?
In what order should they be drilled?
m Should producers be complex (deviated/horizontal) wells located at
the platform, or should they be simple but tied-back to a subsea
manifold?
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® How many platforms or rigs will be needed? If offshore, should they
be floating or permanent?

® What potential future intervention should be accommodated? Inter-
vention refers to an ability to reenter a well to perform either routine
maintenance or perform major changes—referred to as a work-over.

® How many injectors (if any at all) should be drilled? Where should
they be located?

® How large should the processing facility* be? If small, then capital
expenditure will be reduced but may ultimately limit throughput
(the amount of hydrocarbons sent to market thereby restricting cash
flow). If the process facility is made too large, then it may be costly
and also operationally inefficient.

m Are there adjacent fields waiting to be developed? If so, should the
process facility be shared? Is this a valid and reasonable future pos-
sibility in anticipation of uncertain future throughput?

m Should a new pipeline be laid? If so, where would it be best to land
it, or is it possible to tie it into an existing pipeline elsewhere with
available capacity? Should other transportation methods be consid-
ered (e.g., FPSO, or floating production and storage operation’)?

The number of different engineering permutations available at this stage
means that management may be faced with several viable alternatives,
which are contingent on the assumptions on which they were developed.
Real options enable uncertainty to be explicitly quantified at this stage.

m Production. Depending on the size of the reserve (and how prolific the
wells are) the engineer must manage this resource as carefully as any other
valuable asset. Reservoir management (the manner and strategy in which
we produce from a field) has become increasingly important over the past
few years. Older, less technically advanced, production methods were
inefficient, often leaving 75 percent or more of the oil in the ground—
oil that cannot be easily extracted afterward, if at all. Increasing the ef-
ficiency of our production from our reservoirs is now a crucial part of any
engineering effort (unfortunately, nature prevents us from extracting
100 percent of the oil; there will always be some left behind).

Production Phase—Where Real Options Come In. Valid production
options include:
m Are there any areas of the field that are unswept® and can be exploited
by drilling more wells?
m Should we farm out (divest) some, or all, of the asset to other
companies?
m Should we consider further seismic data acquisition?
m Should we consider taking existing production wells and converting
them into injection wells to improve the overall field performance?
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® What options does one have to extend the life of the field?

m Should we consider reentering certain wells and performing various
actions to improve their performance (e.g., reperforating some or all
of the well, shutting off poorly producing zones, drilling a smaller
branch well [known as a sidetrack] to access unswept reserves, etc.)?
What information needs to be collected to be able to make these op-
erational decisions? How is such information best obtained? At what
cost and at what operational risk? (Reentering a well may be a haz-
ardous and potentially damaging act.)

Once again, there are many opportunities during the production phase
to make decisions that are still subject to considerable uncertainty. Even
though the field may be mature and much experience has been accumu-
lated, the operator is still faced with many management options that can
impact ultimate reservoir performance and economic viability.

Decommissioning (also known as Abandonment). Once reserves have
been depleted, the infrastructure can either be left to decay or—
increasingly—it must be dismantled in an environmentally and econom-
ically efficient manner. This is especially true for the North Sea and
offshore United States.

® Decommissioning Phase—Where Real Options Come In. Valid pro-

duction options include:

m What will the ultimate abandonment cost be, and what is the like-
lihood that this will remain true at the end of the life of the field?

m Should the full cost of abandonment be included in the initial devel-
opment strategy, or is there a way to hedge some or all of this cost?

m What contingency should be built in to account for changes in
legislation?

m At what threshold does abandonment cost make the project unprof-
itable, and how would this impact our initial development strategy?

This brief (and admittedly incomplete) list of bullet points at least demon-
strates why the oil industry is ideally suited for a real options-type analysis
because the companies exhibit all the necessary ingredients:

m Large capital investments.

m Uncertain revenue streams.

m Often long lead times to achieve these uncertain cash flows.

® Uncertainty in the amount of potential production (reservoir size and

quality).

® Numerous technical alternatives at all stages of development.
m Political risk and market exposure (external influences outside the con-

trol of the operating company).
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Final Word: Early examples of options-based analysis are found in the oil
and gas industry.” The impact and wholesale adoption so far has been limited.
Why this is the case in the oil industry raises important issues that should be
kept in mind when considering adopting real options as a practice in any
company.

Real options are technically demanding, with a definite learning curve in
the oil industry, and have three main hurdle classifications:?

® Marketing Problem. Selling real options to management, appreciating
the utility and benefit, understanding their capabilities and strengths (as
well as weaknesses), and ultimately communicating these ideas (compa-
nies usually have a few volunteer champions/early adopters, but they
often remain isolated unless there is suitable communication of these
concepts, particularly in a nontechnical capacity, which may be easier
said than done).

u Analysis Problem. Problem framing and correct technical analysis (not
too difficult to resolve if suitably trained technical people are available—
and have read this book).

m Impact Problem. Not really the interpretation of results but rather act-
ing on them, implementing them, monitoring and benchmarking them,
then communicating them (a recurring theme), and finally managing the
whole process.

These issues should be kept in mind when communicating the concepts and
results of a real options analysis.
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Intellectual Propenrty
Economics on Real
Options in Patent and
Intangible Valuation

The following is contributed by A. Tracy Gomes, President and CEO of In-
tellectual Property Economics, LLC, located in Dallas, Texas. Gomes’s firm
specializes in the valuation of intellectual property and intangibles, for the
purposes of corporate financial planning and tax transactions.

Real options analysis is designed to explicitly incorporate and analyze risk
and uncertainty associated with real assets. Intellectual property (IP), whether
defined in its strictest, most narrow legal sense—patents, trademarks, trade
secrets, and copyrights—or more broadly to encompass all intellectual/
intangible assets created from human conceptual endeavor, is the poster child
of uncertainty, and exemplifies the great challenge and promise that is real
options analysis.

In this information- and knowledge-based age that is the postmodern
economy, IP is the most fundamental and valuable asset in business today.
From 1978 to 1998, the composition of market value of the S&P 500 has
been transformed from 80 percent physical assets, 20 percent intangible assets,
to 20 percent physical assets, 80 percent intangible assets.! Since 1990, the
annual revenue realized from just the licensing of patented technology has
grown from less than $10 billion to nearly $120 billion (not counting the di-
rect administrative and maintenance costs, which are likely less than one-half
of one percent; that is $120 billion in net, bottom-line profit).

But this is just the IP that is visible, that the marketplace can actually see
and has already put a value on. The goal and application for real options
analysis lies in the vast uncovered trove of IP that is unseen and hidden, and
like a giant iceberg lies just below the surface. For younger, emerging compa-
nies, this is likely to be IP that is in process—research and development



Intellectual Property Economics on Real Options in Patent and Intangible Valuation 81

projects in varying stages of development. For older companies, IP value is
likely to be found not only in those efforts still in the pipeline but perhaps
even more so in those efforts long ago completed and placed on the shelf.

Kevin Rivette, in his seminal book, Rembrandts in the Attic, recounts
the embarrassing legacy of Xerox, which discarded such “worthless” ideas
as the PC, laser printing, the Ethernet, and graphical user interface (GUI),
only to see them transformed from trash to cash by someone else. Leading
industry companies have gotten religious and are fast about combing through
their patent portfolios. Procter & Gamble, after a three-year internal audit,
estimates that it is utilizing only about 10 percent of its 25,000-patent port-
folio. Dupont has allocated each of its 29,000 patents to one of 15 business
units. And IBM has literally thrown open its vaults, declaring each and every
patent, each technology and process, even trade secrets as potentially “up
for sale.”

Recognizing that something is of potential value, and knowing what the
value of that something is, are two different things. Information and knowl-
edge are the guideposts of strategic business decision making and the glue of
economic transactions. When information is incomplete or unknown, business
decisions tend to be delayed and markets fail to clear. Stereotypical examples
in the case of IP are the individual sole inventors who think their ideas are
worth millions and the giant multinational corporations who are only willing
to pay pennies. Unfortunately, the reality of today’s IP business transactions is
all too often characterized by divergent bid/offer sheets, lengthy negotiations,
and tortured contractual terms,? leading to excessively high and wasteful
transaction costs. Perhaps even more disheartening are the thousands of IP
deals in which buyer and seller don’t even get a chance to meet—IP left or-
phaned on countless Internet exchanges, or projects abandoned or put back on
the shelf because they are thought to be too costly or their markets too remote
or too shallow.

It is here that real options analysis holds so much promise, to be applied
to those IP assets and projects that were thought to be too vague, too un-
known, and too iffy. Not that it can predict the future success or failure of
IP development or the creation of some still hypothetical market, or that it
can turn perennial duds into potential deals. Real options analysis is not
magic, nor does it make risk or uncertainty vanish and go away. What it does
do is attempt to make risk and uncertainty explicit through rational statisti-
cal means. In this way, uncertainty is bounded and risk quantified such that
information becomes more clear and tangible, and the knowledge base ex-
panded, thereby aiding decision making.

Unlike financial assets, there are no existing liquid markets for intangi-
ble “real” assets. Real options analysis seeks to change that by providing a
means to demystify the risk and uncertainty surrounding IP and supply po-
tential buyers and sellers with objective, quantifiable information to shortcut
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uncertainty, clarify risk, and clear the path to shorter, smoother, and less
costly IP deal making. Two examples provide a case in point.

A small automotive engineering start-up identifies a cutting-edge tech-
nology being developed by a private research institute. They approach the
institute, seeking the acquisition or license of the technology. Given that the
technology is a few years from commercialization, and the expectant market,
which is being driven by governmental regulation (and resisted by manufac-
turers), is several more years into the future, instead of jumping into negoti-
ations, the two sides agree to an outside independent economic analysis.

Due to cost considerations, simplified real options analysis was performed
modeling future auto demand and holding government regulation constant.
The real options valuation, though nearly twice as high as the conventional
DCEF analysis, gave both parties a clearer view of uncertainty and amount of
risk facing the technology. After the two-month analysis, the parties entered
into negotiations and within two months completed discussions, and drafted
and signed an agreement.

A second case involves a medium-sized contract research organization
with a proprietary portfolio of nearly 400 patents, processes, trade secrets,
and disclosures spread over an area of half a dozen different fields of tech-
nology. Seeking to extract value from its IP assets, and develop an additional
revenue stream, the firm selected a sampling of assets (in varying stages of
development) from several of its portfolio segments and contracted for a risk
assessment—the beginning stages of an options analysis prior to modeling.
The assessment identified several key parameters, including various risks (tech-
nical, competition, and regulatory) as well as timing issues, both technical and
market. And, while not a complete options analysis, the assessment did pro-
vide management with valuable, tangible information with which to assess
and prioritize the sampling of assets and develop a template to evaluate all
its IP on a go-forward basis.

Uncertainty and risk are nowhere more real and tangible than in the case
of intellectual property. Understandably, this uncertainty makes firms hesitant
in decision making regarding IP and virtually hamstrung in IP deal making.
The role of real options analysis in IP is to identify and quantify uncertainty,
to illuminate risk, and thereby to increase confidence and realize the full value
of the IP.
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Gemplus on Real Options in
High-Tech R&D

The following is contributed by Jim Schreckengast, Sr. Vice President of Gem-
plus International SA, the world’s leading provider of smart cards and solu-
tions for the telecommunications, financial, government, and IT industries.
Gemplus is one of the most innovative companies of its kind, carrying a sig-
nificant investment in research and development (R&D) aimed at driving
forward the state-of-the-art in secure, ultrathin computing platforms, wire-
less security, identity, privacy, content protection, and trusted architectures.

Gemplus is a high-tech company. Such companies assign great importance to
R&D, because high-tech companies often derive their primary competitive
advantage through technology, and R&D plays a pivotal role in determining
the technology position of these companies. Effective management of R&D
is difficult and involves significant uncertainty. Moreover, company re-
sources are limited, so it is critical for management to invest R&D resources
wisely, considering the many types of value that can be produced by these re-
sources. Gemplus recognizes the complexity of managing R&D efforts in
rapidly changing and competitive environments and has used real options
analysis to improve the effectiveness of R&D investment decisions.

One of the most significant challenges in R&D is the management of in-
novation. Management of this process is difficult, because successful innova-
tion usually involves the discovery and generation of knowledge, while
exploiting existing knowledge and capabilities in an attempt to generate value
through new products and services, to differentiate existing offerings, to lower
costs, and to disrupt the competitive landscape. Each successful innovation
may be used as a building block for further R&D efforts, enabling the firm to
create a sustainable competitive advantage through a cohesive R&D program
that blends and builds on previous results. For example, a firm pursuing low-
power, wireless communications technologies for tiny wearable computers
might discover that their latest approach to reducing power requirements has
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the capability to generate fine-grained location and speed information as a
side effect of communication. This location information could enable the
firm to begin generating a new family of location-based services, while en-
hancing routing and switching in dynamic wireless networks. Further, the
company might recognize that expansion of investment in fine-grained loca-
tion technologies could position the firm favorably to compete in context-rich
service delivery, if the market for these services materializes in two years. In
addition, the R&D director might conclude that investment in this technol-
ogy will improve the firm’s ability to manage bandwidth and resource uti-
lization, if the results of current research in peer-to-peer network architectures
prove promising.

The chain of loosely connected innovations in the previous example is
surprisingly representative of the events that unfold in practice within a high-
tech industry. While prediction of a specific sequence of innovations is usu-
ally infeasible, successful companies often develop innovation systems that
recognize the potential for these chains and develop R&D systems that can
stimulate their creation while retaining the flexibility to capitalize on the most
promising among them over time.

The complexities of analyzing technical uncertainty, market uncertainty,
and competitive movements in a rapidly changing industry often drive man-
agement to either shorten the time horizon of R&D projects to the extent that
each project has a very predictable (and often unremarkable) outcome, or to
assemble R&D projects as a collection of desperate “bets” in the hopes of
finding one that “wins” for the company. The former approach tends to re-
strict flexibility, because project managers will focus energy and resources on
short-term tasks that are directly linked to the limited scope of each project.
The latter approach dilutes R&D resources across many unrelated projects
and overlooks potential synergies between the outcomes of these efforts. Fur-
thermore, by viewing the R&D portfolio as a collection of “bets,” manage-
ment may fail to recognize the many opportunities that usually exist to
control, refine, and combine the intermediate results of these projects in a way
that enhances the total value of R&D.

Traditional valuation techniques for R&D (e.g., decision trees and NPV)
may exacerbate the fundamental problems associated with investment analy-
sis and portfolio management, because these techniques rely solely on infor-
mation available at the time of the analysis and cannot accurately value
flexibility over time. The limitations of these techniques often go unrecognized
by decision makers, resulting in suboptimal R&D investment decisions.

Gemplus uses an R&D management approach that recognizes three key
realities for its industry:

1. Uncertainties are resolved on a continuous basis as R&D is conducted,
competitive conditions change, and market expectations evolve.
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2. There is a significant lag that exists between the time a company begins
to invest in a technology and the time when the company can wield that
technology effectively to generate new products and services.

3. The most valuable R&D investments are those that simultaneously
build on existing, distinctive competencies while generating capabilities
that enhance the firm’s flexibility in light of existing uncertainties.

These realities compel Gemplus to manage R&D on a continuous basis and
to invest while significant uncertainties exist, valuing the flexibility created by
R&D investments. Each R&D project carries a primary purpose but may
also carry a number of secondary objectives that relate to the value of real op-
tions associated with expected capabilities delivered by the project. Gemplus
manages a portfolio of R&D innovation efforts in the context of a technol-
ogy road map that makes the most significant real options apparent, and re-
lates the strategic direction of the company to the flexibility and competitive
advantage sought by its R&D efforts.

Once the most significant real options have been identified, each R&D
project is valued in the context of this road map. Research proposals are eval-
uated based on the value of the information generated by the work, together
with the relevant capabilities that may be generated and the flexibility this
affords the company. Gemplus has seen up to 70 percent of the value of a re-
search proposal arise from the real options generated by the research. Devel-
opment projects are typically valued for their primary purpose and for real
options arising from R&D management flexibility (i.e., expansion and con-
traction in the course of portfolio management), technology switching capa-
bilities (e.g., when it is unclear which technology will emerge as a dominant
design), and real options created in the context of the technology road map
(e.g., multipurpose technologies). Although a development project usually
has a much smaller percentage of its value attributed to real options, the dif-
ference can be significant enough to alter R&D investment decisions that
would have otherwise favored a less flexible or less synergistic effort.

R&D efforts also result in the generation of intellectual property. Patents
are of particular interest, because they can affect the firm’s ability to protect
products and services derived from the patented technology. Further, patents
may be licensed, sold, or used to erect barriers (i.e., entry, switching, substitu-
tion, and forward or backward integration), as well as to counter infringe-
ment claims by third parties. Thus, patents may carry significant value for
the firm, and this value reflects the real options associated with the invention
now and in the future. Gemplus believes that correct valuation of intellectual
property, and patents in particular, leads to improved intellectual property
strategies and more effective research prioritization. Thus, Gemplus has
changed its intellectual property strategy and valuation process to explicitly
incorporate the value of real options created by R&D patents.
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Acquiring technology from outside the firm is often an integral element
of a good technology strategy. Thus, R&D managers must determine how to
value technologies accurately. Like direct R&D investments, technology ac-
quisitions may carry a significant value associated with real options. Acqui-
sition valuation should include comparables, the value for direct exploitation
of the technology, and the value of real options associated with the technol-
ogy. Such valuation should also consider real options forgone by the current
technology owner and the game theoretic aspects of bidding competitively
for the technology with others. Gemplus considers real options analysis to be
a critical ingredient to accurate valuation of technology acquisitions and has
augmented its process to include this analysis.

It should be noted that recognition of the value associated with real op-
tions in R&D must be combined with a process for acting on the decisions as-
sociated with these real options. If real options are not effectively linked with
the ongoing R&D management process, it may be difficult to realize the val-
ues projected by the real options analysis. For instance, Gemplus found that
the value of R&D management options was highly dependent on the life
cycle and review that was applied to projects and programs. For example, a
hardware development project often follows a traditional “waterfall” life
cycle with natural checkpoints at the conclusion of investigation, specifica-
tion, design, and implementation. These checkpoints present an opportunity
to take advantage of what has been learned over time and to alter the course
of the project. The project could be expanded or reduced, changed to incor-
porate a new capability from a recently completed research project, or per-
haps altered in a more fundamental way. Software development projects,
however, may follow a more iterative life cycle, with less time between cy-
cles and fewer natural checkpoints. These differences should be considered
carefully when identifying management options associated with a project.

Of course, all of the activity associated with real options analysis in
R&D is aimed at more accurately valuing technological choices, so that the
best decisions are made for the firm. The experience at Gemplus thus far
suggests that these efforts are worthwhile. Real options analysis is a power-
ful financial tool that meshes nicely with the complexities of managing a col-
lection of projects and research activities that inherently carry significant
uncertainty, but also represent great potential value for the firm.
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Sprint on Real Options in
Telecommunications

The following is contributed by Marty Nevshemal (EMDP, Global Markets
Division) and Mark Akason (FMDP, Local Telecommunications Division)
of Sprint. Sprint is a global communications company serving 23 million
business and residential customers in more than 70 countries. With more than
80,000 employees worldwide and $23 billion in annual revenues, the West-
wood, Kansas-based company is represented on the New York Stock Ex-
change by the FON group and the PCS group. On the wireline side, the
Sprint FON Group (NYSE: FON) comprises Sprint’s Global Markets
Group and the Local Telecommunications Division, as well as product dis-
tribution and directory publishing businesses. On the wireless side, the
Sprint PCS Group (NYSE: PCS) consists of Sprint’s wireless PCS operations.
Sprint is widely recognized for developing, engineering, and deploying state-
of-the-art technologies in the telecommunications industry, including the
nation’s first nationwide all-digital, fiber-optic network. The Global Markets
Group provides a broad suite of communications services to business and
residential customers. These services include domestic long-distance and in-
ternational voice service; data service like Internet, frame relay access and
transport, Web hosting, and managed security; and broadband.

In the twentieth century, telecommunications has become ubiquitous in
developed countries. In 1999, total telecommunications revenues in the
United States were in excess of $260 billion and had grown in excess of 10
percent per year for the prior four years.! By December 2000, there were
more than 100 million mobile wireless subscribers in the United States.> Even
more staggering is the capital intensity necessary to drive this revenue and
provide this service. In 2000, the largest telecom company, AT&T, required
assets of $234 billion to drive revenue of $56 billion, a ratio of greater than
4:1.° Not only is simple growth in population and locations driving the in-
dustry, but also new technologies and applications such as wireless and the
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Internet are fueling that growth. Given the capital intensity and sheer size of
the investments, to be successful in the telecom industry it is critical that
companies make decisions that properly value and assess the new technolo-
gies and applications. This is where real options can play a role.

The goal of any company is to make the right decision regarding its in-
vestments. One of the goals of any investment decision is to optimize value
while preserving flexibility. Often though, optimum value and flexibility are
at odds. An example of this dichotomy is that one can choose a strategy of
leading the industry by investing in and implementing new, unproven tech-
nologies that will hopefully become the platform(s) for future profitable prod-
ucts and services. Or one can choose a wait-and-see strategy, holding back on
investments until the technology standard is recognized industry-wide. Both
strategies have obvious advantages and disadvantages. The first strategy opens
a telecom company up to the risk of investing in a technology that may not
become the industry standard, may be a dead end (remember BETA tapes?),
or may not meet all the desired specifications. Furthermore, the magnitude
of the “cutting edge” technology bet, if it does not work, could adversely im-
pact the financial viability of the firm.

Therefore, it is critically important for a telecommunications company
such as Sprint to ensure that their decision-making process includes a struc-
tured method that recognizes both the benefits and pitfalls of a particular
technology investment as soon as information about that technology becomes
available. This method should quickly obtain information in a usable form
to decision makers so that they can take appropriate action. Finally, this struc-
tured method must ensure that timely decision points be identified, where
actions can be taken to either improve the development results or obtain the
option to redeploy resources to better opportunities.

One of the ways that Sprint believes that this strategic flexibility for tech-
nology investments can be systematically implemented throughout the organ-
ization is through the adoption of real options analysis. The very nature of the
analysis forces managers to think about the growth and flexibility options that
may be available in any technology investment decision. Real options analysis
has a process for valuing these options, and it identifies decision points along
the way.

Systemic to the telecom industry is the requirement of management to
make critically important strategic decisions regarding the implementation
and adaptation of various telecom technologies that will have significant im-
pact on the value of their firm over the long term. Overall, these technologies
are extremely capital intensive, especially in the start-up phase, and take an
extended period to develop and implement, and have an extended payoff
period.

Here are a couple of examples of capital-intensive telecom technology
bets that a telecom company has to make:
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m Selection of wireless technology (e.g., TDMA —Time Division Multiple
Access, CDMA—Code Division Multiple Access, or GSM—Global
System for Mobile Communications).

m Third Generation (3G) build-out and timing of a commercial rollout.

m 3G wireless technology applications.

m Location and construction of Metropolitan Area Networks (MANSs), Cen-
tral Offices (COs), and Points-of-Presence (POPs).

m Capacity of its backbone fiber network.

m Technology of the backbone network (ATM— Asynchronous Transfer
Mode versus IP—Internet Protocol).

Generally speaking, there are three basic outcomes to any technology
decision using a strategy to lead. Each outcome has distinct effects on the
company, both operationally and financially:

m The right technology choice generally leads to success in its many
forms: sustainable competitive advantage in pricing/cost structure,
first-to-market benefits, greater market share, recognition as a superior
brand, operational efficiencies, superior financial results, and industry
recognition.

m The wrong technology choice without strategic options to redirect the
assets or redeploy resources could lead to a sustained competitive dis-
advantage and/or a technology dead end from which it takes consider-
able financial and operational resources to recover.

m However, the wrong initial choice can also lead to success eventually—
if viable strategic and tactical options are acted on in a timely manner. At
a minimum, these options can help avoid financial distress and/or reduce
its duration and/or the extent of a competitive disadvantage.

It is important to implement valuation techniques that improve the analysis
of business opportunities, but perhaps more important, telecom managers
should strive to implement a structured thought/analysis process that builds
operational flexibility into every business case.

This is where real options analysis has shown to have definite benefits.
More specifically, the thought process that forces management to look for
and demand strategic flexibility is critical. Furthermore, similar to the value
of Monte Carlo simulations that educate management to better understand
the input variables as opposed to concentrating on a final output NPV (net
present value), real options analysis also forces management to better under-
stand these input variables. However, it goes a couple of steps further by valu-
ing strategic flexibility and identifying trigger points where the direction of
the business plan may be amended. The challenge is how to implement the
mechanics of real options analysis.
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In the telecom industry there are typically no natural trigger points where
hard-stop reviews are required as there are in the pharmaceutical industry or
in the oil and gas industry. Within the pharmaceutical industry, for example,
there are natural gates/decision points, such as FDA reviews, that act as trig-
ger points where the strategic direction of the product/project can be and typ-
ically must be revisited.

For technology companies like Sprint, these trigger points are not im-
plicit. Instead, they need to be actively defined by management and built into
a structured analysis. These trigger points can be based on fixed time line re-
views (monthly/quarterly/yearly) or can occur when a technology reaches a
natural review stage such as the completion of product design, product de-
velopment, market analysis, or pricing. Other milestones include when finan-
cial and operational thresholds are realized (project overspent/competing
technology introduced/growth targets exceeded).

When implementing new technology, historical benchmark data re-
garding the chance that a particular event will occur is not available. For ex-
ample, there is no historical precedent to show the percentage chance that
CDMA rather than GSM technology will be the preferred wireless technology
in the United States over the long run. Yet, the adoption of one technology
over the other may have serious financial ramifications for the various wire-
less carriers. Therefore, management, in many cases, will base the value of the
option on their subjective analysis of the situation. With real options, the final
outcome of management’s analysis is determined through thorough analysis
and critical thinking, and the result has considerable value.

Similar cases are present throughout the telecom industry and may result
in considerable subjective leeway that allows for wide swings in the value of
any particular option. This is not to say that this dilutes the value of real op-
tions analysis. On the contrary, just having the structured thought process
that recognizes that there is value in strategic flexibility and in trying to put
a value on this flexibility is important unto itself.

In summary, applying the key principles of real options analysis is im-
portant and valuable; and overall, real options analysis complements tradi-
tional analysis tools and in many cases is an improvement over them.

The following examples are telecom-specific areas where various types
of real options can be used to determine the financial viability of the project.

m Wireless Minutes of Use (MOU) and Replacement of Wireline MOU.
In today’s competitive wireless landscape, most, if not all, of the nation-
wide wireless carriers are offering long-distance plans as part of their
wireless package. As wireless penetration increases, this drives MOU to
the long-distance carriers and may change the economics of the wireline
build-out for some carriers. Furthermore, because wireless subscribers
have long distance bundled into their monthly recurring charge (MRC),
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many are replacing their wireline phones with wireless phones for long
distance. Therefore, real options analysis can be done to place a value
on both wireless and wireline carriers.

® Valuing New Technologies Using Sequential Compound and Redeploy
Resources Options. 3G can be seen as both a sequential compound and
redeploy resources option. Some wireless carriers in the United States,
such as Sprint, will be able to implement 3G by deploying software up-
grades throughout the existing network, while others will need to build
out new networks. Companies that find 3G a sequential compound op-
tion can upgrade their network to 3G capable with very little (if any) in-
cremental investment over what the wireless company would normally
invest to build-out capacity. In addition, the subscribers of these com-
panies will be able to utilize existing phones that are not 3G capable for
voice services.

m Wireless companies that cannot upgrade sequentially to 3G must re-
deploy resources from the existing wireless network. These compa-
nies must spend billions of dollars acquiring the spectrum to enable
the build-out of 3G networks. In Europe alone, an estimated $100
billion was spent acquiring the spectrum to allow 3G. These com-
panies must redeploy these significant resources to build out their
3G-capable network, while maintaining their existing networks. In
addition, the customers of these companies must purchase new hand-
sets because their existing phones will not function on the new 3G-
capable networks.

m The options that wireless carriers face today can be traced back to
an option that faced the companies years ago. As stated earlier, a real
option existed between CDMA, TDMA, and GSM for wireless tech-
nologies that the industry is just now getting better visibility on. The
decisions made then have consequences today and in the future for
the viability of these companies’ 3G offerings.

m Leveraging Local Assets Using New Market Penetration and Change
Technology Options. Incumbent local exchange carriers (ILEC) are in
a unique competitive position and therefore can use a new market pen-
etration option analysis when valuing expenditures on their existing
local infrastructure. This can be used to offer long-distance service with
minimal infrastructure upgrade to allow the ILECs to enter new markets
as well as to offer new technologies like high speed data, video, and the
Internet to existing local customers.

m The change of technology option is one that is facing or will be
facing all major ILECs. The existing circuit-switched network is not
efficient enough to handle the increasing amount of traffic from both
data and voice. Carriers built their networks to handle peak voice
traffic during the business day, but in actuality the peak times of the
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network now occur during the evening because of Internet and data
use. The change to a packet-based data network is an option that
local carriers are facing today. The change to packet technology will
create 2 much more efficient network that will handle both the in-
creasing voice and data traffic. This change technology option to a
packet-based network also enables more options in the future by
opening the possibility of creating new markets and products that
cannot exist on the old circuit-based network.
® Infrastructure Build-Out (Expand versus Contract Options). The
expand/contract option is gaining more and more validity in the current
telecom environment. Network build-out is a capital-intensive require-
ment that has forced many carriers to leverage their balance sheets with
a large amount of debt. However, demand for telecommunications serv-
ices has not kept up with supply, resulting in excess fiber capacity. De-
pending on the location and availability of excess capacity, it may be
cheaper for a telco to lease existing capacity from another telco than to
build out its own network. In addition, due to the strained finances of
some carriers, this capacity may be acquired at prices that offer a con-
siderable discount to any unilateral build-out scenario.
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Traditional Valuation
Approaches

INTRODUCTION

This chapter begins with an introduction to traditional analysis, namely, the
discounted cash flow model. It showcases some of the limitations and short-
comings through several examples. Specifically, traditional approaches under-
estimate the value of a project by ignoring the value of its flexibility. Some of
these limitations are addressed in greater detail, and potential approaches to
correct these shortcomings are also addressed. Further improvements in the
areas of more advanced analytics are discussed, including the potential
use of Monte Carlo simulation, real options analysis, and portfolio resource
optimization.

THE TRADITIONAL VIEWS

Value is defined as the single time-value discounted number that is represen-
tative of all future net profitability. In contrast, the market price of an asset
may or may not be identical to its value. (Assets, projects, and strategies are
used interchangeably.) For instance, when an asset is sold at a significant bar-
gain, its price may be somewhat lower than its value, and one would surmise
that the purchaser has obtained a significant amount of value. The idea of
valuation in creating a fair market value is to determine the price that closely
resembles the true value of an asset. This true value comes from the physical
aspects of the asset as well as the nonphysical, intrinsic, or intangible aspect
of the asset. Both aspects have the capabilities of generating extrinsic mon-
etary or intrinsic strategic value. Traditionally, there are three mainstream
approaches to valuation, namely, the market approach, the income approach,
and the cost approach.
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Market Approach The market approach looks at comparable assets in the
marketplace and their corresponding prices and assumes that market forces
will tend to move the market price to an equilibrium level. It is further as-
sumed that the market price is also the fair market value, after adjusting for
transaction costs and risk differentials. Sometimes a market-, industry-, or
firm-specific adjustment is warranted, to bring the comparables closer to the
operating structure of the firm whose asset is being valued. These approaches
could include common-sizing the comparable firms, performing quantitative
screening using criteria that closely resemble the firm’s industry, operations,
size, revenues, functions, profitability levels, operational efficiency, competi-
tion, market, and risks.

Income Approach The income approach looks at the future potential profit or
free-cash-flow-generating potential of the asset and attempts to quantify, fore-
cast, and discount these net free cash flows to a present value. The cost of im-
plementation, acquisition, and development of the asset is then deducted from
this present value of cash flows to generate a net present value (NPV). Often,
the cash flow stream is discounted at a firm-specified hurdle rate, at the
weighted average cost of capital, or at a risk-adjusted discount rate based on
the perceived project-specific risk, historical firm risk, or overall business risk.

The three approaches to valuation are market approach, income ap-
proach, and cost approach.

Cost Approach The cost approach looks at the cost a firm would incur if it were
to replace or reproduce the asset’s future profitability potential, including the
cost of its strategic intangibles if the asset were to be created from the ground
up. Although the financial theories underlying this approach are sound in the
more traditional deterministic view, they cannot reasonably be used in iso-
lation when analyzing the true strategic flexibility value of a firm, project,
or asset.

Other Approaches Other approaches used in valuation, more appropriately
applied to the valuation of intangibles, rely on quantifying the economic via-
bility and economic gains the asset brings to the firm. There are several well-
known methodologies to intangible-asset valuation, particularly in valuing
trademarks and brand names. These methodologies apply the combination
of the market, income, and cost approaches just described.

The first method compares pricing strategies and assumes that by having
some dominant market position by virtue of a strong trademark or brand
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recognition—for instance, Coca-Cola—the firm can charge a premium price
for its product. Hence, if we can find market comparables producing simi-
lar products, in similar markets, performing similar functions, facing similar
market uncertainties and risks, the price differential would then pertain ex-
clusively to the brand name. These comparables are generally adjusted to ac-
count for the different conditions under which the firms operate. This price
premium per unit is then multiplied by the projected quantity of sales, and
the outcome after performing a discounted cash flow analysis will be the resid-
ual profits allocated to the intangible. A similar argument can be set forth in
using operating profit margin in lieu of price per unit. Operating profit before
taxes is used instead of net profit after taxes because it avoids the problems
of comparables having different capital structure policies or carry-forward net
operating losses and other tax-shield implications.

Another method uses a common-size analysis of the profit and loss state-
ments between the firm holding the asset and market comparables. This takes
into account any advantage from economies of scale and economies of scope.
The idea here is to convert the income statement items as a percentage of sales,
and balance sheet items as a percentage of total assets. In addition, in order
to increase comparability, the ratio of operating profit to sales of the com-
parable firm is then multiplied by the asset-holding firm’s projected revenue
structure, thereby eliminating the potential problem of having to account for
differences in economies of scale and scope. This approach uses a percentage
of sales, return on investment, or return on asset ratio as the common-size
variable.

PRACTICAL ISSUES USING TRADITIONAL
VALUATION METHODOLOGIES

The traditional valuation methodology relying on a discounted cash flow se-
ries does not get at some of the intrinsic attributes of the asset or investment
opportunity. Traditional methods assume that the investment is an all-or-
nothing strategy and do not account for managerial flexibility that exists
such that management can alter the course of an investment over time when
certain aspects of the project’s uncertainty become known. One of the value-
added components of using real options is that it takes into account manage-
ment’s ability to create, execute, and abandon strategic and flexible options.

There are several potential problem areas in using a traditional discounted
cash flow calculation on strategic optionalities. These problems include un-
dervaluing an asset that currently produces little or no cash flow, the non-
constant nature of the weighted average cost of capital discount rate through
time, the estimation of an asset’s economic life, forecast errors in creating the
future cash flows, and insufficient tests for plausibility of the final results.
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Real options when applied using an options theoretical framework can mit-
igate some of these problematic areas. Otherwise, financial profit level metrics,
such as NPV or internal rate of return (IRR), will be skewed and not provide
a comprehensive view of the entire investment value. However, the discounted
cash flow model does have its merits:

Discounted Cash Flow Advantages

m Clear, consistent decision criteria for all projects.
m Same results regardless of risk preferences of investors.
m Quantitative, decent level of precision, and economically rational.
m Not as vulnerable to accounting conventions (depreciation, inventory
valuation, and so forth).
m Factors in the time value of money and risk structures.
m Relatively simple, widely taught, and widely accepted.
m Simple to explain to management: “If benefits outweigh the costs, do it!”
In reality, an analyst should be aware of several issues prior to using dis-
counted cash flow models, as shown in Table 2.1. The most important as-
pects include the business reality that risks and uncertainty abound when
decisions have to be made and that management has the strategic flexibility
to make and change decisions as these uncertainties become known over time.
In such a stochastic world, using deterministic models like the discounted cash
flow may potentially grossly underestimate the value of a particular project.
A deterministic discounted cash flow model assumes at the outset that all fu-
ture outcomes are fixed. If this is the case, then the discounted cash flow
model is correctly specified as there would be no fluctuations in business con-
ditions that would change the value of a particular project. In essence, there
would be no value in flexibility. However, the actual business environment
is highly fluid, and if management has the flexibility to make appropriate
changes when conditions differ, then there is indeed value in flexibility, a value
that will be grossly underestimated using a discounted cash flow model.
Figure 2.1 shows a simple example of applying discounted cash flow
analysis. Assume that there is a project that costs $1,000 to implement at
Year O that will bring in the following projected positive cash flows in the
subsequent five years: $500, $600, $700, $800, and $900. These projected
values are simply subjective best-guess forecasts on the part of the analyst.
As can be seen in Figure 2.1, the time line shows all the pertinent cash flows
and their respective discounted present values. Assuming that the analyst de-
cides that the project should be discounted at a 20 percent risk-adjusted dis-
count rate using a weighted average cost of capital (WACC), we calculate
the NPV to be $985.92 and a corresponding IRR of 54.97 percent.! Further-
more, the analyst assumes that the project will have an infinite economic life
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TABLE 2.1

Disadvantages of DCF: Assumptions versus Realities

DCF Assumptions

Realities

Decisions are made now, and
cash flow streams are fixed
for the future.

Projects are “mini firms,”
and they are interchangeable
with whole firms.

Once launched, all projects
are passively managed.

Future free cash flow streams
are all highly predictable
and deterministic.

Project discount rate used

is the opportunity cost of
capital, which is proportional
to nondiversifiable risk.

All risks are completely
accounted for by the
discount rate.

All factors that could affect
the outcome of the project
and value to the investors
are reflected in the DCF
model through the NPV

or IRR.

Unknown, intangible, or
immeasurable factors are
valued at zero.

Uncertainty and variability in future outcomes.
Not all decisions are made today, as some may
be deferred to the future, when uncertainty
becomes resolved.

With the inclusion of network effects,
diversification, interdependencies, and synergy,
firms are portfolios of projects and their resulting
cash flows. Sometimes projects cannot be
evaluated as stand-alone cash flows.

Projects are usually actively managed through
project life cycle, including checkpoints, decision
options, budget constraints, and so forth.

It may be difficult to estimate future cash flows
as they are usually stochastic and risky
in nature.

There are multiple sources of business risks with
different characteristics, and some are
diversifiable across projects or time.

Firm and project risk can change during the
course of a project.

Because of project complexity and so-called
externalities, it may be difficult or impossible

to quantify all factors in terms of incremental
cash flows. Distributed, unplanned outcomes
(e.g., strategic vision and entrepreneurial activity)
can be significant and strategically important.

Many of the important benefits are intangible
assets or qualitative strategic positions.

and assumes a long-term growth rate of cash flows of 5 percent. Using the
Gordon constant growth model, the analyst calculates the terminal value of
the project’s cash flow at Year 5 to be $6,300. Discounting this figure for
five years at the risk-adjusted discount rate and adding it to the original NPV
yields a total NPV with terminal value of $3,517.75.
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The calculations can all be seen in Figure 2.1, where we further define w
as the weights, d for debt, ce for common equity, and ps for preferred stocks,
FCF as the free cash flows, tax as the corporate tax rate, g as the long-term
growth rate of cash flows, and rf as the risk-free rate.

Even with a simplistic discounted cash flow model like this, we can see
the many shortcomings of using a discounted cash flow model that are wor-
thy of mention. Figure 2.2 lists some of the more noteworthy issues. For in-
stance, the NPV is calculated as the present value of future net free cash flows
(benefits) less the present value of implementation costs (investment costs).
However, in many instances, analysts tend to discount both benefits and in-
vestment costs at a single identical market risk-adjusted discount rate, usu-
ally the WACC. This, of course, is flawed.

The benefits should be discounted at a market risk-adjusted discount
rate like the WACC, but the investment cost should be discounted at
a reinvestment rate similar to the risk-free rate. Cash flows that have mar-
ket risks should be discounted at the market risk-adjusted rate, while cash
flows that have private risks should be discounted at the risk-free rate be-
cause the market will only compensate the firm for taking on the market
risks but not private risks. It is usually assumed that the benefits are subject
to market risks (because benefit free cash flows depend on market demand,
market prices, and other exogenous market factors), while investment costs
depend on internal private risks (such as the firm’s ability to complete build-
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FIGURE 2.1 Applying Discounted Cash Flow Analysis
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FIGURE 2.2 Shortcomings of Discounted Cash Flow Analysis

ing a project in a timely fashion or the costs and inefficiencies incurred be-
yond what is projected). On occasion, these implementation costs may also
be discounted at a rate slightly higher than a risk-free rate, such as a money-
market rate or at the opportunity cost of being able to invest the sum in an-
other project yielding a particular interest rate. Suffice it to say that benefits
and investment costs should be discounted at different rates if they are sub-
ject to different risks. Otherwise, discounting the costs at a much higher
market risk-adjusted rate will reduce the costs significantly, making the proj-
ect look as though it were more valuable than it actually is.

Variables with market risks should be discounted at a market risk-
adjusted rate, which is bigher than the risk-free rate, which is used to
discount variables with private risks.

The discount rate that is used is usually calculated from a WACC, cap-
ital asset-pricing model (CAPM), multifactor asset-pricing theory (MAPT),
or arbitrage pricing theory (APT), set by management as a requirement for
the firm, or as a hurdle rate for specific projects.> In most circumstances, if
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we were to perform a simple discounted cash flow model, the most sensitive
variable is usually the discount rate. The discount rate is also the most difficult
variable to correctly quantify. Hence, this leaves the discount rate open to po-
tential abuse and subjective manipulation. A target NPV value can be obtained
by simply massaging the discount rate to a suitable level. In addition, certain
input assumptions required to calculate the discount rate are also subject to
questions. For instance, in the WACC, the input for cost of common equity
is usually derived using some form of the CAPM. In the CAPM, the infamous
beta (B) is extremely difficult to calculate. In financial assets, we can obtain
beta through a calculation of the covariance between a firm’s stock prices
and the market portfolio, divided by the variance of the market portfolio.
Beta is then a sensitivity factor measuring the co-movements of a firm’s equity
prices with respect to the market. The problem is that equity prices change
every few minutes! Depending on the time frame used for the calculation,
beta may fluctuate wildly. In addition, for nontraded physical assets, we can-
not reasonably calculate beta this way. Using a firm’s tradable financial assets’
beta as a proxy for the beta on a single nontraded and nonmarketable project
within a firm that has many other projects is ill advised. Chapter 6 introduces
a new method of obtaining discount rates through the use of internal compa-
rables, Monte Carlo simulation, and real options volatility estimates. This ap-
proach, discussed in the Risk versus Uncertainty section of Chapter 6, provides
a more robust discount rate estimate than the CAPM with external market
comparables.

There are risk and return diversification effects among projects as well
as investor psychology and overreaction in the market that are not accounted
for. There are also other more robust asset-pricing models that can be used
to estimate a project’s discount rate, but they require great care. For instance,
the APT models are built on the CAPM and have additional risk factors that
may drive the value of the discount rate. These risk factors include maturity
risk, default risk, inflation risk, country risk, size risk, nonmarketable risk,
control risk, minority shareholder risk, and others. Even the firm’s CEO’s golf
score can be a risk hazard (e.g., rash decisions may be made after a bad game
or bad projects may be approved after a hole in one, believing in a lucky
streak). The issue arises when one has to decide which risks to include and
which not to include. This is definitely a difficult task, to say the least.?

The methods to find a relevant discount rate include using a WACC,
CAPM, APT, MAPT, comparability analysis, management assump-
tions, and a firm- or project-specific hurdle rate.
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One other widely used method is that of comparability analysis. By gath-
ering publicly available data on the trading of financial assets by stripped-
down entities with similar functions, markets, risks, and geographical location,
analysts can then estimate the beta (a measure of systematic risk) or even a
relevant discount rate from these comparable firms. For instance, an analyst
who is trying to gather information on a research and development effort for
a particular type of drug can conceivably gather market data on pharma-
ceutical firms performing only research and development on similar drugs,
existing in the same market, and having the same risks. The median or av-
erage beta value can then be used as a market proxy for the project currently
under evaluation. Obviously, there is no silver bullet, but if an analyst were
diligent enough, he or she could obtain estimates from these different
sources and create a better estimate. Monte Carlo simulation is most pre-
ferred in situations like these.* The analyst can define the relevant simulation
inputs using the range obtained from the comparable firms and simulate the
discounted cash flow model to obtain the range of relevant variables (typi-
cally the NPV or IRR).

Now that you have the relevant discount rate, the free cash flow stream
should then be discounted appropriately. Herein lies another problem: fore-
casting the relevant free cash flows and deciding if they should be discounted
on a continuous basis or a discrete basis, versus using end-of-year or mid-
year conventions. Free cash flows should be net of taxes, with the relevant
noncash expenses added back.® Because free cash flows are generally calcu-
lated starting with revenues and proceeding through direct cost of goods sold,
operating expenses, depreciation expenses, interest payments, taxes, and so
forth, there is certainly room for mistakes to compound over time.

Forecasting cash flows several years into the future is oftentimes very
difficult and may require the use of fancy econometric regression modeling
techniques, time-series analysis, management hunches, and experience. A
recommended method is not to create single-point estimates of cash flows at
certain time periods but to use Monte Carlo simulation and assess the rele-
vant probabilities of cash flow events. In addition, because cash flows in the
distant future are certainly riskier than in the near future, the relevant dis-
count rate should also change to reflect this. Instead of using a single discount
rate for all future cash flow events, the discount rate should incorporate the
changing risk structure of cash flows over time. This can be done by either
weighing the cash flow streams’ probabilistic risks (standard deviations of
forecast distributions) or using a stepwise technique of adding the maturity
risk premium inherent in U.S. Treasury securities at different maturity peri-
ods. This bootstrapping approach allows the analyst to incorporate what the
market experts predict the future market risk structure looks like. That is,
discount the cash flows twice: once for time value of money, and once for risk.
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This way, changes in risk structure and risk-free rate can be adjusted ac-
cordingly over time.

Finally, the issue of terminal value is of major concern for anyone using
a discounted cash flow model. Several methods of calculating terminal values
exist, such as the Gordon constant growth model (GGM), zero growth per-
petuity consul, and the supernormal growth models. The GGM is the most
widely used, where at the end of a series of forecast cash flows, the GGM as-
sumes that cash flow growth will be constant through perpetuity. The GGM
is calculated as the free cash flow at the end of the forecast period multiplied
by a relative growth rate, divided by the discount rate less the long-term
growth rate. Shown in Figure 2.2, we see that the GGM breaks down when
the long-term growth rate exceeds the discount rate. This growth rate is also
assumed to be fixed, and the entire terminal value is highly sensitive to this
growth rate assumption. In the end, the value calculated is highly suspect be-
cause a small difference in growth rates will mean a significant fluctuation
in value. Perhaps a better method is to assume some type of growth curve in
the free cash flow series. These growth curves can be obtained through some
basic time-series analysis as well as using more advanced assumptions in
stochastic modeling. Nonetheless, we see that even a well-known, generally
accepted and applied discounted cash flow model has significant analytical re-
strictions and problems. These problems are rather significant and can com-
pound over time, creating misleading results. Great care should be taken when
performing such analyses. Later chapters introduce the concepts of Monte
Carlo simulation, real options, and portfolio optimization. These new analyt-
ical methods address some of the issues discussed above. However, it should
be stressed that these new analytics do not provide the silver bullet for valua-
tion and decision making. They provide value-added insights, and the mag-
nitude of insights and value obtained from these new methods depend solely
on the type and characteristic of the project under evaluation.

The applicability of traditional analysis versus the new analytics across
a time horizon is depicted in Figure 2.3. During the shorter time period, hold-
ing everything else constant, the ability for the analyst to predict the near fu-
ture is greater than when the period extends beyond the historical and forecast
periods. This is because the longer the horizon, the harder it is to fully predict
all the unknowns, and hence, management can create value by being able to
successfully initiate and execute strategic options.

The traditional and new analytics can also be viewed as a matrix of ap-
proaches as seen in Figure 2.4, where the analytics are segregated by its an-
alytical perspective and type. With regard to perspective, the analytical
approach can be either a top-down or a bottom-up approach. A top-down
approach implies a higher focus on macro variables than on micro variables.
The level of granularity from the macro to micro levels include starting from
the global perspective, and working through market or economic conditions,
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Traditional versus New Analytics

DCF Analysis most useful. New Analytics are best.
Project's
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Traditional approaches are more relevant for shorter time frames that are somewhat deterministic. In a longer time
frame where strategic opportunities arise, a more appropriate approach incorporates new advanced analytics,
including Real Options, Monte Carlo Simulations, and Portfolio Optimization.

FIGURE 2.3 Using the Appropriate Analysis

impact on a specific industry, and more specifically, the firm’s competitive
options. At the firm level, the analyst may be concerned with a single proj-
ect and the portfolio of projects from a risk management perspective. At the
project level, detail focus will be on the variables impacting the value of
the project.

SUMMARY

Traditional analyses like the discounted cash flow are fraught with problems.
They underestimate the flexibility value of a project and assume that all out-
comes are static and all decisions made are irrevocable. In reality, business
decisions are made in a highly fluid environment where uncertainties abound
and management is always vigilant in making changes in decisions when the
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FIGURE 2.4 An Analytical Perspective

circumstances require a change. To value such decisions in a deterministic
view may potentially grossly underestimate the true intrinsic value of a proj-
ect. New sets of rules and methodology are required in light of these new
managerial flexibilities. It should be emphasized that real options analysis
builds upon traditional discounted cash flow analysis, providing value-added
insights to decision making. In later chapters, it will be shown that discounted
cash flow analysis is a special case of real options analysis when there is no
uncertainty in the project.

CHAPTER 2 QUESTIONS

—_

. What are the three traditional approaches to valuation?

2. Why should benefits and costs be discounted at two separate discount
rates?

3. Is the following statement true? Why or why not? “The value of a firm
is simply the sum of all its individual projects.”

4. What are some of the assumptions in order for the CAPM to work?
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5. Using the discrete and continuous discounting conventions explained in
Appendix 2A, and assuming a 20 percent discount rate, calculate the net
present value of the following cash flows:

Year 2002 2003 2004 2005 2006 2007
Revenues $100 $200 $300 $400 $500
Operating Expenses 10 20 30 40 50
Net Income 90 180 270 360 450
Investment Costs ($450)

Free Cash Flow ($450) 90 180 270 360 450
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Financial Statement Analysis

This appendix provides some basic financial statement analysis concepts
used in applying real options. The focus is on calculating the free cash flows
used under different scenarios, including making appropriate adjustments
under levered and unlevered operating conditions. Although many versions
of free cash flows exist, these calculations are examples of more generic free
cash flows applicable under most circumstances. An adjustment for inflation
and the calculation of terminal cash flows are also presented here. Finally, a
market multiple approach that uses price-to-earnings ratios is also briefly
discussed.

FREE CASH FLOW CALCULATIONS

Below is a list of some generic financial statement definitions used to generate
free cash flows based on GAAP (generally accepted accounting principles):

m Gross Profits = Revenues — Cost of Goods Sold.

m Earnings Before Interest and Taxes = Gross Profits — Selling Expenses
— General and Administrative Costs — Depreciation — Amortization.

m Earnings Before Taxes = Earnings Before Interest and Taxes — Interest.

Net Income = Earnings Before Taxes — Taxes.

m Free Cash Flow to Equity = Net Income + Depreciation + Amortization
— Capital Expenditures = Change in Net Working Capital — Principal
Repayments + New Debt Proceeds — Preferred Dividends — Interest (1
— Tax Rate).

m Free Cash Flow to the Firm = EBIT (1 — Tax Rate) + Depreciation +
Amortization — Capital Expenditures + Change in Net Working Capital
= Free Cash Flow to Equity + Principal Repayment — New Debt Pro-
ceeds + Preferred Dividends + Interest (1 — Tax Rate).

76
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FREE CASH FLOW TO A FIRM

An alternative version of the free cash flow for an unlevered firm can be de-
fined as:

m Free Cash Flow = Earnings Before Interest and Taxes [1 — Effective Tax

Rate] + Depreciation + Amortization — Capital Expenditures = Change
in Net Working Capital.

LEVERED FREE CASH FLOW

For a levered firm, the free cash flow becomes:

m Free Cash Flow = Net Income + «a [Depreciation + Amortization] *+ «
[ Change in Net Working Capital] — « [Capital Expenditures] — Principal
Repayments + New Debt Proceeds — Preferred Debt Dividends

where
a is the equity-to-total-capital ratio; and
(1 — «) is the debt ratio.

INFLATION ADJUSTMENT

The following adjustments show an inflationary adjustment for free cash
flows and discount rates from nominal to real conditions:

Nominal CF
Real CF=————
" Real OF = T E )
N )
= Real p = 1+ Nominal p B
(1 +E[m])
where

CF s the cash flow series;

T is the inflation rate;

E[m] is the expected inflation rate; and
p is the discount rate.
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TERMINAL VALUE

The following are commonly accepted ways of getting terminal free cash flows
under zero growth, constant growth, and supernormal growth assumptions:

m Zero Growth Perpetuity:

i _ FCF;
< +WACC] WACC

= Constant Growth:

- 1+ gt) FCFr_4(1_+ gy) _ FCF 7
Z WACC]f WACC— g, WACC- g

® Punctuated Supernormal Growth:

FCFEy(1 + gy)
FCE [WACC — g,]
. [1+WACC]! [1 + WACC]N

t

WACC = weke + wdkd(l — T) + wpekpe
where

FCF is the free cash flow series;
is the weighted average cost of capital;
is the growth rate of free cash flows;
is the individual time periods;
is the terminal time at which a forecast is available;
is the time when a punctuated growth rate occurs;
is the respective weights on each capital component;
is the cost of common equity;
is the cost of debt;
is the cost of preferred equity; and
is the effective tax rate.

me Zomo
S
a
@

=
a

QAR
a

PRICE-TO-EARNINGS MULTIPLES APPROACH

Related concepts in valuation are the uses of market multiples. An example
is using the price-to-earnings multiple, which is a simple derivation of the
constant growth model shown above, breaking it down into dividends per
share (DPS) and earnings per share (EPS) components.
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The derivation starts with the constant growth model:

_ DPSy(1 +g,)__DPS,

ke_ 8n ke_gn

Py

We then use the fact that the dividend per share next period (DPS,) is the
earnings per share current period multiplied by the payout ratio (PR), defined
as the ratio of dividends per share to earnings per share, which is assumed
to be constant, multiplied by one plus the growth rate (1 + g) of earnings:

DPS, = EPS,[PR](1 + g,)

Similarly, the earnings per share the following period is the same as the
earnings per share this period multiplied by one plus the growth rate:

EPS, = EPS,(1 + g,)

Substituting the earnings per share model for the dividends per share in the
constant growth model, we get the pricing relationship:

EPS)[PR](1 + g,)
PO = k g

Because we are using price-to-earnings ratios, we can divide the pricing rela-
tionship by earnings per share to obtain an approximation of the price-to-
earnings ratio (PE):

P, [PR]
0 L ~PE
EPS, k.~ g,

Assuming that the PE and EPS ratios are fairly stable over time, we can esti-
mate the current pricing structure through forecasting the next term EPS
we obtain:

P, = EPS,[PE,]

Issues of using PE ratios include the fact that PE ratios change across dif-
ferent markets. If a firm serves multiple markets, it is difficult to find an
adequate weighted average PE ratio. PE ratios may not be stable through
time and are most certainly not stable across firms. If more efficient firms
are added to less efficiently run firms, the average PE ratio may be skewed.
In addition, market overreaction and speculation, particularly among
high-growth firms, provide an overinflated PE ratio. Furthermore, not all
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firms are publicly held, some firms may not have a PE ratio, and if valua-
tion of individual projects is required, PE ratios may not be adequate
because it is difficult to isolate a specific investment’s profitability and its
corresponding PE ratio. Similar approaches include using other proxy mul-
tiples, including Business Enterprise Value to Earnings, Price to Book,
Price to Sales, and so forth, with similar methods and applications.

DISCOUNTING CONVENTIONS

In using discounted cash flow analysis, several conventions require consider-
ation: continuous versus discrete discounting, midyear versus end-of-year con-
vention, and beginning versus end-of-period discounting.

Continuous versus Discrete Periodic Discounting

The discounting convention is important when performing a discounted cash
flow analysis. Using the same compounding period principle, future cash
flows can be discounted using the effective annualized discount rate. For in-
stance, suppose an annualized discount rate of 30 percent is used on a $100
cash flow. Depending on the compounding periodicity, the calculated pres-
ent value and future value differ (see Table 2A.1).

To illustrate this point further, a $100 deposit in a 30 percent interest-
bearing account will yield $130 at the end of one year if the interest com-
pounds once a year. However, if interest is compounded quarterly, the deposit
value increases to $133.55 due to the additional interest-on-interest com-
pounding effects. For instance,

Value at the end of the first quarter = $100.00(1 + 0.30/4)' = $107.50
Value at the end of the second quarter = $107.50(1 + 0.30/4)' = $115.56
Value at the end of the third quarter = $115.56(1 + 0.30/4)' = $124.23
Value at the end of the fourth quarter = $124.23(1 + 0.30/4)' = $133.55

That is, the annualized discount rate for different compounding periods is its
effective annualized rate, calculated as

periods
] -

( discount
1+ -
periods

For the quarterly compounding interest rate, the effective annualized rate is

o\ 4
<1 + 30.00 A)) —1=33.55%
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TABLE 2A.1  Continuous versus Periodic Discrete Discounting

Present
Periodicity Periods/Year  Interest Factor  Future Value Value
Annual 1 30.00% $130.00 $76.92
Quarterly 4 33.55 133.55 74.88
Monthly 12 34.49 134.49 74.36
Daily 365 34.97 134.97 74.09
Continuous o0 34.99 134.99 74.08

Applying this rate for the year, we have $100(1 + 0.3355) = $133.55.

This analysis can be extended for monthly, daily, or any other periodici-
ties. In addition, if the interest rate is assumed to be continuously compound-
ing, the continuous effective annualized rate should be used, where

lim
periods —

(1 + M)Perio‘k —1= ediscounz -1

periods
For instance, the 30 percent interest rate compounded continuously yields ¢%3
— 1 = 34.99%. Notice that as the number of compounding periods increases,
the effective interest rate increases until it approaches the limit of continuous
compounding.

The annual, quarterly, monthly, and daily compounding is termed dis-
crete periodic compounding, as compared to the continuous compounding
approach using the exponential function. In summary, the higher the number
of compounding periods, the higher the future value and the lower the pres-
ent value of a cash flow payment. When applied to discounted cash flow
analysis, if the discount rate calculated using a weighted average cost of cap-
ital is continuously compounding (e.g., interest payments and cost of capital
are continuously compounding), then the net present value calculated may be
overoptimistic if discounted discretely.

Full-Year versus Midyear Gonvention

In the conventional discounted cash flow approach, cash flows occurring in
the future are discounted back to the present value and summed to obtain the
net present value of a project. These cash flows are usually attached to a par-
ticular period in the future, measured usually in years, quarters, or months. The
time line in Figure 2A.1 illustrates a sample series of cash flows over the next
five years, with an assumed 20 percent discount rate. Because the cash flows
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FIGURE 2A.1 Full-Year versus Mid-Year Discounting

are attached to an annual time line, they are usually assumed to occur at the
end of each year. That is, $500 will be recognized at the end of the first full
year, $600 at the end of the second year, and so forth. This is termed the
full-year discounting convention.

However, under usual business conditions, cash flows tend to accrue
throughout the entire year and do not arrive in a single lump sum at the end
of the year. Instead, the midyear convention may be applied. That is, the
$500 cash flow gets accrued over the entire first year and should be discounted
at 0.5 years, rather than 1.0 years. Using this midpoint supposes that the
$500 cash flow comes in equally over the entire year.

$500 + $600 + $700 + $800 + $900

NPV =-$1,000 +
1+0.2%  1+0.2)" @1+0.2*° @1+023%° @1+02)*

=$1,175

End-of-Period versus Beginning-of-Period
Discounting

Another key issue in discounting involves the use of end-of-period versus be-
ginning-of-period discounting. Suppose the cash flow series are generated on
a time line such as in Figure 2A.2.

Further suppose that the valuation date is January 1, 2002. The $500
cash flow can occur either at the beginning of the first year (January 1,
2003) or at the end of the first year (December 31, 2003). The former re-
quires the discounting of one year and the latter, the discounting of two

WACC = 20%
Year 2002 Year 2003 Year 2004 Year 2005
T T T T > Time
Investment =-$1,000 FCF; =$500 FCF, = $600 FCF;=$700

FIGURE 2A.2 End-of-Period versus Beginning-of-Period Discounting
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years. If the cash flows are assumed to roll in equally over the year—that is,
from January 1, 2002, to January 1, 2003 —the discounting should only be for
0.5 years.

In contrast, suppose that the valuation date is December 31, 2002, and
the cash flow series occurs at January 1, 2003, or December 31, 2003. The
former requires no discounting, while the latter requires a one-year dis-
counting using an end-of-year discounting convention. In the midyear con-
vention, the cash flow occurring on December 31, 2003, should be discounted
at 0.5 years.
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Discount Rate versus
Risk-Free Rate

Generally, the weighted average cost of capital (WACC) would be used as
the discount rate for the cash flow series. The only mitigating circumstance is
when the firm wishes to use a hurdle rate that exceeds the WACC to com-
pensate for the additional uncertainty, risks, and opportunity costs the firm
believes it will face by investing in a particular project. As we will see, the use
of a WACC is problematic, and in the real options world, the input is in-
stead a U.S. Treasury spot rate of return with its maturity corresponding to
the economic life of the project under scrutiny.

In general, the WACC is the weighted average of the cost components
of issuing debt, preferred stock, and common equity: WACC = w k(1 — 1)
+ w,k, + w,k,, where o are the respective weights, 7 is the corporate effec-
tive tax rate, and k are the costs corresponding to debt! d, preferred stocks?
p, and common equity? e.

However, multiple other factors affect the cost of capital that need to be
considered, including:

1. The company’s capital structure used to calculate the relevant WACC
discount rate may be inadequate, because project-specific risks are usu-
ally not the same as the overall company’s risk structure.

2. The current and future general interest rates in the economy may be
higher or lower, thus bond coupon rates may change in order to raise
the capital based on fluctuations in the general interest rate. Therefore,
an interest-rate-bootstrapping methodology should be applied to infer
the future spot interest rates using forward interest rates.

3. Tax law changes over time may affect the tax shield enjoyed by debt re-
payments. Furthermore, different tax jurisdictions in different countries
have different tax law applications of tax shields.

4. The firm’s capital structure policy may have specific long-term targets
and weights that do not agree with the current structure, and the firm may
find itself moving toward that optimal structure over time.
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5. Payout versus retention rate policy may change the dividend yield and
thereby change the projected dividend growth rate necessary to calculate
the cost of equity.

6. Investment policy of the firm, including the minimum required rate of
return and risk profile.

7. Dynamic considerations in the economy and industry both ex post and
ex ante.

8. Measurement problems on specific security cost structure.

9. Small business problems making it difficult to measure costs correctly.

10. Depreciation-generated funds and off-balance sheet items are generally
not included in the calculations.

11. Geometric averages and not simple arithmetic averages should be used
for intrayear WACC rates?

12. Selection of market value versus book value weightings® in calculating
the WACC.

13. The capital asset-pricing model (CAPM) is flawed.

THE CAPM VERSUS THE MULTIFACTOR
ASSET-PRICING MODEL

The CAPM model states that under some simplifying assumptions, the rate
of return on any asset may be expected to be equal to the rate of return on
a riskless asset plus a premium that is proportional to the asset’s risk relative
to the market. The CAPM is developed in a theoretical and hypothetical
world with multiple assumptions® that do not hold true in reality, and there-
fore it is flawed by design.”

The alternative is to use a multifactor model that adequately captures
the systematic risks experienced by the firm. In a separate article, the author
used a nonparametric multifactor asset-pricing model and showed that the
results are more robust. However, the details exceed the scope of this book.

Other researchers have tested the CAPM and found that a single factor,
beta, does not sufficiently explain expected returns. Their empirical research
finds support for the inclusion of both size (measured using market value)
and leverage variables. The two leverage variables found to be significant
were the book-to-market ratio and the price-to-earnings ratio. However, when
used together, the book-to-market ratio and size variable absorb the effects
of the price-to-earnings ratio. With empirical support that beta alone is in-
sufficient to capture risk, their model relies on the addition of the natural
logarithm of both the book-to-market ratio and the size of the firm’s market
equity as

E[Ri,t] - [Rf,t] = Bi,t (E[Rm,z] - Rf,t) + 81‘,: ln(BMEi,t) + Vi ln(MEi,t)
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where R;,, R,,,, and R, are the individual expected return for firm i, the ex-
pected market return, and the risk-free rate of return at time #, respectively.
BME;, and ME,, are the book-to-market ratio and the size of the total mar-
ket equity value for firm i at time ¢, respectively.

Other researchers have confirmed these findings, that a three-factor model
better predicts expected returns than the single-factor CAPM. Their main con-
jecture is that asset-pricing is rational and conforms to a three-factor model
that does not reduce to the standard single-factor CAPM. One of the major
problems with the single-factor CAPM is that of determining a good proxy
for the market, which should truly represent all traded securities. In addition,
the expected return on the market proxy typically relies on ex post returns
and does not truly capture expectations. Therefore, the multifactor model is
an attempt to recover the expected CAPM results without all the single-factor
model shortcomings. A variation of the three-factor model is shown as

E[R;.] = [Ry] = Bii (E[R,,] = Rg,) + &, In(SMB, ;) + ¢, In(HML ;)

where SMB;, is the time series of differences in average returns from the
smallest and largest capitalization stocks. HML, , is the time series of differ-
ences in average returns from the highest to the lowest book-to-market ratios,
after ranking the market portfolios into differing quartiles.

We can adapt this multifactor model to accommodate any market and
any industry. The factors in the foregoing model can be sector- or industry-
specific. The macroeconomic variables used will have to be highly correlated
to historical returns of the firm. If sufficient data are available, a multifac-
tor regression model can be generated, and variables found to be statistically
significant can then be used. Obviously, there is potential for abuse and mis-
use of the model.® If used correctly, the model will provide a wealth of in-
formation on the potential risks that the project or asset holds. However, in
the end, the jury is still out on what constitutes a good discount rate model.

Chapter 6 introduces an alternative method of discount rate determina-
tion using internal comparables, Monte Carlo simulation, and real options
volatility estimates. This new approach is discussed in the Risk versus Uncer-
tainty section of Chapter 6.
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INTRODUCTION

This chapter introduces the fundamental essence of real options, providing the
reader several simplified but convincing examples of why a real options ap-
proach provides more insights than traditional valuation methodologies do. A
lengthy but simplified example details the steps an analyst might go through
in evaluating a project. The example expounds on the different decisions that
will be made depending on which methodology is employed, and introduces
the user to the idea of adding significant value to a project by looking at the
different optionalities that exist, sometimes by even creating strategic option-
alities within a project, thereby enhancing its overall value to the firm.

THE FUNDAMENTAL ESSENCE OF REAL OPTIONS

The use of traditional discounted cash flow alone is inappropriate in valuing
certain strategic projects involving managerial flexibility. Two finance pro-
fessors, Michael Brennan and Eduardo Schwartz, provided an example on
valuing the rights to a gold mine. In their example, a mining company owns
the rights to a local gold mine. The rights provide the firm the option, and not
the legal obligation, to mine the gold reserves supposedly abundant in said
mine. Therefore, if the price of gold in the market is high, the firm might wish
to start mining and, in contrast, stop and wait for a later time to begin min-
ing should the price of gold drop significantly in the market. Suppose we set
the cost of mining as X and the payoff on the mined gold as S, taking into
consideration the time value of money. We then have the following payoff

schedule:

§S—X ifandonlyif §S>X
0 ifand only if S=X
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This payoff is identical to the payoff on a call option on the underlying asset,
the value of the mined gold. If the cost exceeds the value of the underlying
asset, the option is left to expire worthless, without execution; otherwise, the
option will be exercised. That is, mine if and only if S exceeds X; otherwise,
do not mine.

As an extension of the gold mine scenario, say we have a proprietary
technology in development or a patent that currently and in the near future
carries little or no cash flow but nonetheless is highly valuable due to the po-
tential strategic positioning it holds for the firm that owns it. A traditional
discounted cash flow method will grossly underestimate the value of this asset.
A real options approach is more suitable and provides better insights into the
actual value of the asset. The firm has the option to either develop the tech-
nology if the potential payoff exceeds the cost or abandon its development
should the opposite be true.

For instance, assume a firm owns a patent on some technology with
a 10-year economic life. To develop the project, the present value of the
total research and development costs is $250 million, but the present
value of the projected sum of all future net cash flows is only $200 mil-
lion. In a traditional discounted cash flow sense, the net present value will
be —$50 million, and the project should be abandoned. However, the
proprietary technology is still valuable to the firm given that there’s a
probability it will become more valuable in the future than projected or
that future projects can benefit from the technology developed. If we
apply real options to valuing this simplified technology example, the re-
sults will be significantly different. By assuming the nominal rate on a 10-
year risk-free U.S. Treasury note is 6 percent and simulating the projected
cash flows, we calculate the value of the research and development ini-
tiative to be $2 million. This implies that the value of flexibility is $52
million or 26 percent of its static NPV value.! By definition, a research
and development initiative involves creating something new and unique
or developing a more enhanced product. The nature of most research and
development initiatives is that they are highly risky and involve a signifi-
cant investment up front, with highly variable potential cash flows in the
future that are generally skewed toward the low end. In other words,
most research and development projects fail to meet expectations and
generally produce lower incremental revenues than deemed profitable.
Hence, in a traditional discounted cash flow sense, research and develop-
ment initiatives are usually unattractive and provide little to no incentives.
However, a cursory look at the current industry would imply otherwise.
Research and development initiatives abound, implying that senior man-
agement sees significant intrinsic value in such initiatives. So there arises
a need to quantify such strategic values.
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THE BASICS OF REAL OPTIONS

Real options, as its name implies, use options theory to evaluate physical or
real assets, as opposed to financial assets or stocks and bonds. In reality, real
options have been in the past very useful in analyzing distressed firms and
firms engaged in research and development with significant amounts of
managerial flexibility under significant amounts of uncertainty. Only in the
past decade has real options started to receive corporate attention in general.

A SIMPLIFIED EXAMPLE OF
REAL OPTIONS IN ACTION

Suppose a client is currently researching and developing new pharmaceuti-
cal products, and the initial outlay required for initiating this endeavor is
$100 million. The projected net benefits, using free cash flow as a proxy, re-
sulting from this research and development effort brings about positive cash
flows of $8 million, $12 million, $15 million, $12 million, $11 million, and
$10 million for the first six years, starting next year. Furthermore, assume
that there is a terminal value of $155 million in year six.> These cash flows
result from routine business functions associated with the firm’s research
and development efforts (assuming the firm is a specialized firm engaged
strictly in research and development). Panel A in Table 3.1 shows a simple dis-
counted cash flow series resulting in a discounted net present value of
$24.85 million using a given 12 percent market risk-adjusted weighted av-
erage cost of capital (WACC).

Assume that the research and development efforts are successful and that
in three years, there is a potential to invest more funds to take the product
to market. For instance, in the case of the pharmaceutical firm, suppose the
first two to three years of research have paid off, and the firm is now ready to
produce and mass-market the newly discovered drug. Panel B shows the se-
ries of cash flows relevant to this event, starting with an initial outlay of an-
other $382 million in year three, which will in turn provide the positive free
cash flows of $30 million, $43 million, and $53 million in years four through
six. In addition, a terminal value of $454 is calculated using the Gordon con-
stant growth model for the remaining cash flows based on economic life
considerations. The net present value is calculated as —$24.99 million for this
second phase. The total net present value for Panels A and B is therefore
—$0.14 million, indicating that the project is not viable. Using this traditional
net present value calculation underestimates the value of the research and
development effort significantly.
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TABLE 3.1 Comparing Real Options and Discounted Cash Flow

Panel A

($ millions)

Time 0 1 2 3 4 5 6
Initial Outlay  $(100.00)

Cash Flow $8.00 $12.00 $15.00 $12.00 $11.00 $ 10.00
Terminal Value $155.00
Net Cash Flow $(100.00) $8.00 $12.00 $15.00 $12.00 $11.00 $165.00
Discount Rate 0% 12% 12% 12% 12% 12% 12%

Present Value  $(100.00) $7.14 $ 9.57 $10.68 $ 7.63 $ 6.24 $ 83.59
Net Present
Value $ 24.85

Panel B

($ millions)
Time 0 1 2 3 4 5 6
Initial Outlay $(382.00)
Cash Flow $30.00 $43.00 $ 53.00
Terminal Value $454.00
Net Cash Flow $(382.00) $30.00 $43.00 $507.00
Discount Rate 5.50% 12% 12% 12%
Present Value $(325.32) $19.07 $24.40 $256.86
Net Present

Value $(24.99)
Total NPV $ (0.14)
Calculated

Call Value $ 73.27
Value of the

Investment $ 98.12

There are a few issues that need to be considered. The first is the discount
rate used on the second initial outlay of $382 million. The second is the op-
tionality of the second series of cash flow projections.

All positive cash flow projections are discounted at a constant 12 per-
cent WACC, but the second initial outlay is discounted at 5.5 percent, as seen
in Panel B in Table 3.1. In reality, the discount rate over time should theo-
retically change slightly due to different interest rate expectations as risks
change over time. An approach is to use a recursive interest rate bootstrap
based on market-forward rates adjusted for risk; but in our simple analysis,
we assume that the 12 percent does not change much over time. The three-
year spot Treasury risk-free rate of 5.5 percent is used on the second invest-
ment outlay because this cash outflow is projected at present and is assumed
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to be susceptible only to private risks and not market risks; hence, the out-
lay should be discounted at the risk-free rate. If the cost outlay is discounted
at the 12 percent WACC, the true value of the investment will be overin-
flated. To prepare for this payment in the future, the firm can set aside the
funds equal to $382 million for use in three years. The firm’s expected rate
of return is set at the corresponding maturity spot Treasury risk-free rate,
and any additional interest income is considered income from investing ac-
tivities. The 12 percent market risk-adjusted weighted average cost of capi-
tal should not be used because the firm wants a 12 percent rate of return on
its research and development initiatives by taking on risk of failure where the
future cash flows are highly susceptible to market risks; but the $382 million
is not under similar risks at present. In financial theory, we tend to separate
market risks (unknown future revenues and free cash flow streams that are
susceptible to market fluctuations) at a market risk-adjusted discount rate—
in this case, the 12 percent WACC—and private risks (the second invest-
ment outlay that may change due to internal firm cost structures and not due
to the market, meaning that the market will not compensate the firm for its
cost inefficiencies in taking the drug to market) at a risk-free rate of 5.5 per-
cent. In other words, cash flows should first be discounted for time value of
money (5.5 percent) and then discounted for risk (6.5 percent). Market risk
should be discounted for time and risk (12 percent) while private risk should
only be discounted for time (5.5 percent).

Next, the optionality of the second cash flow series can be seen as a call
option. The firm has the option to invest and pursue the product to market
phase but not the obligation to do so. If the projected net present value in three
years indicates a negative amount, the firm may abandon this second phase;
or the firm may decide to initiate the second phase should the net present
value prove to be positive and adequately compensate the risks borne. So, if
we value the second phase as a call option, the total net present value of the
entire undertaking, phase one and two combined, would be a positive $98.12
million (calculated by adding the call value of $73.27 million and the phase
one net present value of $24.85 million). This is the true intrinsic strategic
value of the project, because if things do not look as rosy in the future, the firm
does not have the obligation to take the drug to market but can always shelve
the product for later release, sell its patent rights, or use the knowledge gained
for creating other drugs in the future. If the firm neglects this ability to not
execute the second phase, it underestimates the true value of the project.

ADVANCED APPROACHES TO REAL OPTIONS

Clearly, the foregoing example is a simple single-option condition. In more
protracted and sophisticated situations, more sophisticated models have to be
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used. These include closed-form exotic options solutions, partial-differential
equations through the optimization of objective functions subject to con-
straints through dynamic programming, trinomial and multinomial lattice
models, binomial lattices, and stochastic simulations. This book goes into
some of these more advanced applications in later chapters, along with their
corresponding technical appendixes, and shows how they can be applied in
actual business cases. However, for now, we are interested only in the high-
level understanding of what real options are and how even thinking in terms
of strategic optionality helps management make better decisions and obtain
insights that would be unavailable otherwise.

WHY ARE REAL OPTIONS IMPORTANT?

An important point is that the traditional discounted cash flow approach as-
sumes a single decision pathway with fixed outcomes, and all decisions are
made in the beginning without the ability to change and develop over time.
The real options approach considers multiple decision pathways as a conse-
quence of high uncertainty coupled with management’s flexibility in choos-
ing the optimal strategies or options along the way when new information
becomes available. That is, management has the flexibility to make mid-
course strategy corrections when there is uncertainty involved in the future.
As information becomes available and uncertainty becomes resolved, man-
agement can choose the best strategies to implement. Traditional discounted
cash flow assumes a single static decision, while real options assume a mul-
tidimensional dynamic series of decisions, where management has the flexi-
bility to adapt given a change in the business environment.

Traditional approaches assume a static decision-making ability,
while real options assume a dynamic series of future decisions where
management has the flexibility to adapt given changes in the business
environment.

Another way to view the problem is that there are two points to con-
sider: (1) the initial investment starting point where strategic investment de-
cisions have to be made; and (2) the ultimate goal, the optimal decision that
can ever be made to maximize the firm’s return on investment and share-
holder’s wealth. In the traditional discounted cash flow approach, joining
these two points is a straight line, whereas the real options approach looks
like a map with multiple routes to get to the ultimate goal, where each route
is conjoint with others. The former implies a one-time decision-making
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process, while the latter implies a dynamic decision-making process wherein
the investor learns over time and makes different updated decisions as time
passes and events unfold.

As previously outlined, traditional approaches coupled with discounted
cash flow analysis have their pitfalls. Real options provide additional insights
beyond the traditional analyses. At its least, real options provide a sobriety test
of the results obtained using discounted cash flow and, at its best, provide a
robust approach to valuation when coupled with the discounted cash flow
methodology. The theory behind options is sound and reasonably applicable.

Some examples of real options using day-to-day terminology include:

Option to abandon.

Option to wait and see.

Option to delay.

Option to expand.

Option to contract.

Option to choose.

Option to switch resources.

Option for phased stage-gate and sequential investments.

Notice that the names used to describe the more common real options are
rather self-explanatory, unlike the actual model names such as the “Barone-
Adesi-Whaley approximation model for an American option to expand.”
This is important because when it comes to explaining the process and results
to management, the easier it is for them to understand, the higher the chances
of acceptance of the methodology and results. We will, with greater detail,
revisit this idea of making a series of black-box analytics transparent and ex-
positionally easy in Chapter 12.

Traditional approaches to valuing projects associated with the value of
a firm, including any strategic options the firm possesses, or flexible manage-
ment decisions that are dynamic and have the capacity to change over time,
are flawed in several respects. Projects valued using the traditional discounted
cash flow model often provide a value that grossly understates the true fair
market value of the asset. This is because projects may provide a low or zero
cash flow in the near future but nonetheless be valuable to the firm. In addi-
tion, projects can be viewed in terms of owning the option to execute the
rights, not owning the rights per se, because the owner can execute the option
or allow it to expire should the opportunity cost outweigh the benefits of
execution. The recommended options approach takes into consideration this
option to exercise and prices it accordingly. Compared to traditional ap-
proaches, real options provide added elements of robustness to the analysis.
Its inputs in the option-pricing model can be constructed via multiple alterna-
tives, thus providing a method of stress testing or sensitivity testing of the final
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-$100 +$120
O o=
time = 0 time = 1

120
Net Present Value = TS5 100 = $4.3

FIGURE 8.1 Why Optionality Is Important

results. The corollary analysis resulting from real options also provides a ready
means of sobriety checks without having to perform the entire analysis again
from scratch using different assumptions. Finally, Monte Carlo simulation
can be adapted to create thousands of possible outcomes, whose results can
be used in a real options analysis, thereby increasing the model’s robustness.

The following example provides a simplified analogy to why optionality
is important and should be considered in corporate capital investment strate-
gies. Suppose you have an investment strategy that costs $100 to initiate and
you anticipate that on average, the payoff will yield $120 in exactly one year.
Assume a 15 percent weighted average cost of capital and a 5 percent risk-free
rate, both of which are annualized rates. As Figure 3.1 illustrates, the net pres-
ent value of the strategy is $4.3, indicating a good investment potential be-
cause the benefits outweigh the costs.

However, if we wait and see before investing, when uncertainty becomes
resolved, we get the profile shown in Figure 3.2, where the initial investment
outlay occurs at time one and positive cash inflows are going to occur only
at time two. Let’s say that your initial expectations were correct and that the
average or expected value came to be $120 with good market demand pro-
viding a $140 cash flow and in the case of bad demand, only $100. If we had
the option to wait a year, then we could better estimate the trends in demand
and we would have seen the payoff profile bifurcating into two scenarios.
Should the scenario prove unfavorable, we would have the option to aban-

+$140
good
Cost —$100 Expected value +$120
bad
+$100
time = 1 time = 2
140 100

Net Present Value = = $10.6

(1.15)%2  (1.05)!
FIGURE 3.2 1f We Wait until Uncertainty Becomes Resolved
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+$135

good
Cost —$100 Expected value +$106.5

bad

+$78

time = 1 time = 2
1 100
Net Present Value = AN = $6.8

(1.15)>  (1.0S)'

FIGURE 3.3 Realistic Payoff Schedule

don the investment because the costs are identical to the cash inflow (—$100
versus +$100), and we would rationally not pursue this avenue. Hence, we
would pursue this investment only if a good market demand is observed for
the product, and our net present value for waiting an extra year will be $10.6.
This analysis indicates a truncated downside where there is a limited liability
because a rational investor would never knowingly enter a sure-loss invest-
ment strategy. Therefore, the value of flexibility is $6.3.

However, a more realistic payoff schedule should look like Figure 3.3. By
waiting a year and putting off the investment until year two, you are giving
up the potential for a cash inflow now, and the leakage or opportunity cost
by not investing now is the $5 less you could receive ($140 — $135). However,
by putting off the investment, you are also defraying the cost of investing in
that the cost outlay will only occur a year later. The calculated net present
value in this case is $6.8.

GCOMPARING TRADITIONAL APPROACHES
WITH REAL OPTIONS

Figures 3.4 through 3.9 show a step-by-step analysis comparing a traditional
analysis with that of real options, from the analyst’s viewpoint. The analy-
sis starts off with a discounted cash flow model in analyzing future cash flows.
The analyst then applies sensitivity and scenario analysis. This is usually the
extent of traditional approaches. As the results are relatively negative, the an-
alyst then decides to add some new analytics. Monte Carlo simulation is then
used, as well as real options analysis. The results from all these analytical
steps are then compared and conclusions are drawn. This is a good compara-
tive analysis of the results and insights obtained by using the new analytics.
In this example, the analyst has actually added significant value to the over-
all project by creating optionalities within the project by virtue of actively
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Comparing Traditional Approaches and Real Options with Simulation

A. Discounted Cash Flow

The extended example below shows the importance of waiting. That is, suppose a firm needs to make a rather large
capital investment decision but at the same time has the Option to Wait and Defer on making the decision until later.
The firm may be involved in pharmaceutical research and development activities, IT investment activities, or simply in
marketing a new product that is yet untested in the market.

Suppose the analyst charged with performing a financial analysis on the project estimates that the most probable level

of net revenues generated through the implementation of the project with an economic life of 5 years is presented in the
time line below. Further, s/he assumes that the implementation cost is $200 million and the project's risk-adjusted discount
rate is 20%, which also happens to be the firm's weighted average cost of capital. The calculated net present value (NPV)
is found to be at a loss of -$26.70M.

t=0 t=1 t=2 t=3 t=4 t=5

» time
discount rate = 20% [ [ [ [ \ "

—$200M $30M $36M $70M $80M $110M

calculated NPV = -$26.70M
B. Sensitivity Analysis on Discounted Cash Flow
Even though the NPV shows a significant negative amount, the analyst feels that the investment decision can be better
improved through more rigor. Hence, s/he decides to perform a sensitivity analysis. Since in this simplified example, we
only have three variables (discount rate, cost, and future net revenue cash flows), the analyst increases each of these
variables by 10% to note the sensitivity of calculated NPV to these changes.

t=0 t=1 t=2 t=3 t=4 t=5

.
discount rate = 20% [ I I I I > time
-$220M  $30M  $36M  $70M  $80M  $110M
: 5
('f:g;fa;;fg,\jt tzy_;g(fM) calculated NPV goes from —$26.70M to —$46.70M
t=0  t=1 t=2 t=3 t=4  t=5

L
discount rate = 20% [ I I I I > time

-$200M  $33M $40M $77M $88M $121M

increase projected

calculated NPV goes from —$26.70M to —$9.37M revenues by 10%

t=0 t=1 t=2 t=3 t=4 t=5

discount rate = 22% [ [ I [ I
—$200M $30M $36M $70M $80M $110M

increase discount
rate to 22%

calculated NPV goes from —$26.70M to —$35.86M

The entire set of possible sensitivities are presented in the table below, arranged in descending order based on the range of
potential outcomes (indication of the variable's sensitivity). A Tornado Diagram is also created based on this sensitivity table.

Expected NPV Input
Variable Downside Upside Range Downside Upside | Base Case
Cost (546.70) | ($6.70) | $40.00 ($220) ($180) ($200)
Discount Rate (516.77) | ($35.86) | $19.09 18% 22% 20%
Cash Flow 5 ($31.12) | ($22.28) | $8.84 $99 $121 $110
Cash Flow 3 ($30.75) | ($22.65) | $8.10 $63 $77 $70
Cash Flow 4 ($30.56) | ($22.85) | $7.72 $72 $88 $80
Cash Flow 1 (529.20) | ($24.20) | $5.00 $27 $33 $30
Cash Flow 2 (529.20) | ($24.20) | $5.00 $32 $40 $36

FIGURE 3.4 Discounted Cash Flow Model
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Cost

Discount Rate

Cash Flow 5

Cash Flow 3

Cash Flow 4

Cash Flow 1

Cash Flow 2

C. Scenario Analysis

Tornado Diagram

(Range of Net Present Values)

ODownside
B Upside

Next, scenarios were generated. The analyst creates three possible scenarios and provides a subjective estimate of the
probabilities each scenario will occur. For instance, the worst case scenario is 50% of the nominal scenario's projected
revenues, while the best case scenario is 150% of the nominal scenario's projected revenues.

Worst Case Scenario

t=0 t=1 t=2 t=3 t=4 t=5
discount rate = 20% [ I I I I I
-$200M  $15M $18M $35M $40M $55M
20% probability of occurrence
calculated NPV = -$113.25M
Nominal Case Scenario
t=0 t= t=2 t=3 t=4 t=5
discount rate = 20% [ I I I I T
-$200M $30M $36M $70M $80M $110M
50% probability of occurrence
calculated NPV = -$26.70M
Best Case Scenario
t=0 t=1 t=2 t=3 t=4 t=5
discount rate = 20% [ I I I I I
-$200M $45M $54M $105M $120M $165M

30% probability of occurrence

Expected NPV = 0.20 (-$113.25M) + 0.50 (~$26.70M) + 0.30 ($59.94M) = —$18.04M

NPVs for each of the scenarios are calculated, and an Expected NPV is calculated to be -$18.04M based on the probability

calculated NPV = $59.94M

time

time

time

assumptions. The problem here is obvious. The range of possibilities is too large to make any inferences. That is, which
figure should be believed? The -$18.04 or perhaps the nominal case of -$26.70? In addition, the upside potential and downside
risks are fairly significantly different from the nominal or expected cases. What are the chances that any of these will actually

come true? What odds or bets or faith can one place in the results? The analyst then decides to perform some Monte Carlo

simulations to answer these questions.

FIGURE 3.5 Tornado Diagram and Scenario Analysis
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D. Simulation

There are two ways to perform a Monte Carlo simulation in this example. The first is to take the scenario analysis above and

simulate around the calculated NPVs. This assumes that the analyst is highly confident of his/her future cash flow projections
and that the worst-case scenario is indeed the absolute minimum the firm can attain and the best-case scenario is exactly at
the top of the range of possibilities. The second approach is to use the most likely or nominal scenario and simulate its inputs
based on some management-defined ranges of possible cost and revenue structures.

(i) Simulating around scenarios
The analyst simulates around the three scenarios using a Triangular Distribution with the worst-case, nominal-case and best-
case scenarios as input parameters into the simulation model.

Forecast: All Three Conditions
. . Mean -27.06
10,000 Trials Frequency Chart 46 Outliers Standard Deviation 35.31
0197 [ 191 Range Minimum -112.21
I Range Maximum 57.43
= 0144 g ‘ ’ ‘ T 1432 - Range Width 160.64
= a
| 010 | P 955 2 We see that the range is fairly large
= =] ;
S | | ’ ‘ =2 because the scenarios were rather extreme.
o 0057 4775 £ In addition, there is only a 23.89% chance
| | | | that the project will break even or have an
000+ v i 0 NPV > 0.
-109.29 -68.47 -27.66 13.16 53.98
Certainty is 23.89% from 0.00 to +Infinity Net Present Value Dollars
Forecast: All Three Conditions
10,000 Trials Frequency Chart 46 Outliers The 90% statistical confidence interval is
019 191 between -$85.15M and $33.22M, which is
also rather wide. Given such a huge swing
014 + 143.2 in possibilities, we are much better off with
ﬁ‘ E‘ performing a simulation using the second
'-E 010 L955 =2 method, that is, to look at the nominal case
= ol and simulate around that case's input
E 005 - H : +ar7s @ parameters.
.000—+ S 0
-109.29 -68.47 -27.66 13.16
Certainty is 90.00% from -85.15 to 33.22 Net Present Value Dollars

(ii) Simulating around the nominal scenario

Since in the scenario analysis, the analyst created two different scenarios (worst case and best case) based on a 50% fluctuation
in projected revenues from the base case, here we simply look at the base case and by simulation, generate 10,000 scenarios.
Looking back at the Tornado diagram, we noticed that discount rate and cost were the two key determining factors in the analysis;
the second approach can take the form of simulating these two key factors. The analyst simulates around the nominal scenario
assuming a normal distribution for the discount rate with a mean of 20% and a standard deviation of 2% based on historical data
on discount rates used in the firm. The cost structure is simulated assuming a uniform distribution with a minimum of -$180M and
a maximum of -$220M based on input by management. This cost range is based on management intuition and substantiated by
similar projects in the past. The results of the simulation are shown below.

Forecast: Expected NPV
10,000 Trials Frequency Chart 97 Outliers
021 L 208 Mean -25.06
| | L Standard Deviation 14.3
016 | | 156 Range Minimum -69.54
2 ‘ ‘ L E Range Maximum 38.52
§ 010 . 104 2 Range Width 108.06
£ TR LB -
& 005 . - 452 & Here we see that the range is somewhat
| | | | | | more manageable and we can make
000 Lt | | | | Lo more meaningful inferences. Based on the
: (541.98) (529.89) ($17.80) ($5.71) $‘6 3 simulation results, there is only a 3.48%
o . chance that the project will break even.
Certainty is 3.48% from $0.00 to +Infinity

FIGURE 3.6 Simulation
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Forecast: Expected NPV

10,000 Trials Frequency Chart 97 Outliers
.021 [ 208 The 90% statistical confidence interval
b is between -$32.55M and -$1.19M.
1016 e S 11111114111 — ol 156
Z s = Most of the time, the project is in negative
= A R[5 L ET M—————————— 1,1 2 NPV territory, suggesting a rather grim
® c . .
= ] outlook for the project. However, the project
E 10051 e 52 5 is rather important to senior management
| and they wish to know if there is some
. way to add value to this project or make it
oo ) ) 0 financially justifiable to invest in. The
(841.98) ($29.89) ($17.80) (85.71) $6.38 V) .

answer lies in using Real Options.

Certainty is 90.00% from ($32.55) to ($1.19)

E. Real Options

We have the option to wait or defer investing until a later date. That is, wait until uncertainty becomes resolved and then decide on
the next course of action afterwards. Invest in the project only if market conditions indicate a good scenario and decide to abandon
the project if the market condition is akin to the nominal or worst-case scenarios as they both bear negative NPVs.

(i) Option to Wait | (Passive Wait and See Strategy)
Say we decide to wait one year and assuming that we will gather more valuable information within this time frame, we can then
decide whether to execute the project or not at that time. Below is a decision tree indicating our decision path.

t=1 t=2 t=3 t=4 t=5 t=6
.
Best Case discount rate = 20% [ T T I I > time
—$200M $45M $54M $105M $120M $165M
C Wait
and See
Startt=0
Worst and Exit and Abandon

Nominal Case

Calculated NPV after waiting for one year on new information = $49.95M

We see here that the NPV is positive since if after waiting for a year, the market demand is nominal or sluggish, then management
has the right to pull the plug on the project. Otherwise, if it is a great market which meets or exceeds the best-case scenario,
management has the option to execute the project, thereby guaranteeing a positive NPV. The calculated NPV is based on the
forecast revenue stream and is valued at $49.95M.

(ii) Option to Wait Il (Active Market Research Strategy)

Instead of waiting passively for the market to reveal itself over the one-year period as expected previously, management can decide
on an active strategy of pursuing a market research strategy. If the market research costs $5M to initiate and takes 6 months to
obtain reliable information, the firm saves additional time without waiting for the market to reveal itself. Here, if the market

research indicates a highly favorable condition where the best-case scenario revenue stream is to be expected, then the project
will be executed after 6 months. The strategy path and time lines are shown below.

t=0.5 t=15 t=25 t=3.5 t=45 t=5.5

) » time
Best Case discount rate = 20% [ T T T T T
—$200M $45M $54M $105M $120M $165M
O— Market
Research
Start  cost M
Worst and Exit and Abandon

Nominal Case

Calculated NPV after active market research = $49.72M
(after accounting for the -$5M in market research costs)

The calculated NPV here is $49.72M, relatively close to the passive waiting strategy. However, the downside is the $5M which
also represents the greatest possible loss, which is also the premium paid to obtain the option to execute given the right market
conditions.

FIGURE 3.7 Real Options Analysis (Active versus Passive Strategies)
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In retrospect, management could find out the maximum it is willing to pay for the market research in order to cut down the time

it has to wait before making an informed decision. That is, at what market research price would the first option to wait be the same
as the second option to wait? Setting the difference between $49.95M and $49.72M as the reduction in market research cost
brings down the initial $5M to $4.77M. In other words, the maximum amount the firm should pay for the market research should be
no more than $4.77M; otherwise, it is simply wise to follow the passive strategy and wait for a year.

Forecast: Best Condition Only Mean .
Standard Deviation 49.73
10,000 Trials Frequency Chart 89 Outliers Range Minimum 12.43
-0241 244 Range Maximum -0.25
N Range Width 94.57
.01 183 94.82
£ ~ 1 | The resulting distribution range is less
=R eemmm— {11111 ———————————— ~ 122 3 wide, providing a more meaningful
2 L & | inference. Based on the simulation
E 006 " HLHAN R o .... L 61 5 results, the 90% confidence interval has
H . the NPV between $29.40M and $70.16M.
The range, which means almost 100% of
000 I ) N ) K| : —0 the time, the NPV takes on a positive value.
18.25 34.74 51.23 67.72 84.21
Certainty is 90.00% from 29.40 to 70.16 Net Present Value Dollars
Forecast: Best Condition Only
. . The 50% confidence interval has the NPV
10,00221'r|als Frequency Chart 89 O\U;"'ijrs between $41.32M and $58.19M. We can
. | interpret this range as the expected value
range since 50% of the time, the real
01 183 - NPV will fall within this range, with a mean
= o |of $49.73M.
2 012 122 2
5 S
E 006 Ler @
000~ -0
18.25 34.74 51.23 67.72 84.21
Certainty is 50.00% from 41.32 to 58.19 Net Present Value Dollars

F. Observations

We clearly see that by using the three Scenarios versus an Expected Value approach, we obtain rather similar results in terms

of NPV but through simulation, the Expected Value approach provides a much tighter distribution and the results are more robust
as well as easier to interpret. Once we added in the Real Options approach, the risk has been significantly reduced and the return
dramatically increased. The overlay chart below compares the simulated distributions of the three approaches. The blue series is
the Scenario approach incorporating all three scenarios and simulating around them. The green series is the Expected Value
approach, simulating around the nominal revenue projections, and the red series is the Real Options approach where we only
execute if the best condition is obtained.
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B Expected NPV
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FIGURE 3.8 Analysis Observations
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The example here holds true in most cases when we compare the approach used in a traditional Discounted Cash Flow (DCF)
method to Real Options. Since we can define risk as uncertain fluctuations in revenues and the NPV level, all downside risks
are mitigated in Real Options since you do not execute the project if the nominal or worst-case scenario occurs in time. In
retrospect, the upside risks are maximized such that the returns are increased since the project will only be executed when
the best-case scenario occurs. This hereby creates a win-win situation where risks are mitigated and returns are enhanced,
simply by having the right strategic optionalities available, acting appropriately, and valuing the project in terms of its "real"

or intrinsic value, which includes this opportunity to make midcourse corrections when new information becomes available.

Probability
A DCF and Real Options: Risk-Return Comparisons
02
From lower returns and higher risk to < >
higher returns and lower risk Risk is measured in

standard deviation (c)
and returns are measured
in % (u)

proach

» % Returns
by —r

In addition, what seems on the outset as an unprofitable project yielding an NPV of -$26.70M can be justified and made
profitable since the project has in reality an Option to Wait or Defer until a later date. Once uncertainty becomes resolved
and we have more available information, management can then decide whether to go forward based on market conditions.
This call option could be bought through the use of active market research. By having this delay tactic, the firm has indeed
truncated any downside risks but still protected its upside potential.

Next, if we look at the Minimax Approach, where we attempt to Minimize the Maximum regret of making a decision, the
maximum level of regret for pursuing the project blindly using a DCF approach may yield the worst-case scenario of -$113.25M
while using an Option to Wait but simultaneously pursuing an active marketing research strategy will yield a maximum regret

of -$4.77M. This is because the levels of maximum regret occur under the worst possible scenario. If this occurs, investing in the
project blindly will yield the worst case of -§113.25, but the maximum loss in the real options world is the limited liability of the
premium paid to run the market research, adding up to only -$4.77M because the firm would never execute the project when the
market is highly unfavorable.

In addition, the Value of Perfect Information can be calculated as the increase in value created through the Option to Wait as
compared to the naive Expected NPV approach. That is, the Value of having Perfect Information is $68M. We obtain this level
of perfect information through the initiation of a marketing research strategy which costs an additional $4.77M. This means that
the strategic Real Options thinking and decision-making process has created a leverage of 14.25 times. This view is analogous
to a financial option where we can purchase a call option for, say, $5 with a specified exercise price for a specified time of an
underlying common equity with a current market price of $100. With $5, the call purchaser has leveraged his purchasing power
into $100, or 20 times. In addition, if the equity price rises to $150 (50% increase akin to our example above), the call holder will
execute the option, purchase the stock at $100, turn around and sell it for $150, less the $5 cost and yield a net $45. The option
holder has, under this execution condition, leveraged the initial $5 into a $45 profit, or 9 times the original investment.

Finally and more importantly is that we see by adding in a strategic option, we have increased the value of the project
immensely. It is therefore wise for management to consider an optionality framework in the decision-making process.

That is, to find the strategic options that exist in different projects or to create strategic options in order to increase the
project's value.

FIGURE 3.9 Analysis Conclusions



102 THEORY

pursuing and passively waiting for more information to become available
prior to making any decisions.

Of course, several simplifying assumptions have to be made here, includ-
ing the ability for the firm to simply wait and execute a year from now with-
out any market or competitive repercussions. That is, the one-year delay will
not allow a competitor to gain a first-to-market advantage or capture addi-
tional market share, where the firm’s competitor may be willing to take the
risk and invest in a similar project and gain the advantage while the firm is
not willing to do so. In addition, the cost and cash flows are assumed to be
the same whether the project is initiated immediately or in the future. Obvi-
ously, these more complex assumptions can be added into the analysis, but for
illustration purposes, we assume the basic assumptions hold, where costs and
cash flows remain the same no matter the execution date, and that compe-
tition is negligible. See Chapters 10 and 11 for cases where a dividend yield
or opportunity cost (leakage or outflow) occurs if we wait too long, and how
these can be modeled in real options.

SUMMARY

Having real options in a project can be highly valuable, both in recognizing
where these optionalities exist and in introducing and strategically setting up
options in the project. Strategic options can provide decision makers the op-
portunity to hedge their bets in the face of uncertainty. By having the ability
to make midcourse corrections downstream when these uncertainties become
known, decision makers have essentially hedged themselves against any down-
side risks. As seen in this chapter, a real options approach provides the deci-
sion maker not only a hedging vehicle but also significant upside leverage. In
comparing approaches, real options analysis shows that not only can a pro-
ject’s risk be reduced but also returns can be enhanced by strategically creat-
ing options in projects.

CHAPTER 3 QUESTIONS

1. Can an option take on a negative value?

2. Why are real options sometimes viewed as strategic maps of convoluted
pathways?

3. Why are real options seen as risk-reduction and value-enhancement
strategies?

4. Why are the real options names usually self-explanatory and not based
on names of mathematical models?

5. What is a Tornado diagram as presented in Figure 3.5’s example?
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The Real Options Process

INTRODUCTION

This chapter introduces the reader to the real options process framework.
This framework comprises eight distinct phases of a successful real options
implementation, going from a qualitative management screening process to
creating clear and concise reports for management. The process was devel-
oped by the author based on previous successful implementations of real op-
tions both in the consulting arena and in industry-specific problems. These
phases can be performed either in isolation or together in sequence for a more
robust real options analysis.

CRITICAL STEPS IN PERFORMING
REAL OPTIONS ANALYSIS

Figure 4.1 at the end of the chapter shows the real options process up close.
We can segregate the real options process into the following eight simple steps.
These steps include:

Qualitative management screening.
Time-series and regression forecasting.
Base case net present value analysis.
Monte Carlo simulation.

Real options problem framing.

Real options modeling and analysis.
Portfolio and resource optimization.
Reporting and update analysis.

Qualitative Management Screening

Qualitative management screening is the first step in any real options analy-
sis (Figure 4.1). Management has to decide which projects, assets, initiatives,
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or strategies are viable for further analysis, in accordance with the firm’s mis-
sion, vision, goal, or overall business strategy. The firm’s mission, vision, goal,
or overall business strategy may include market penetration strategies, com-
petitive advantage, technical, acquisition, growth, synergistic, or globaliza-
tion issues. That is, the initial list of projects should be qualified in terms of
meeting management’s agenda. Often this is where the most valuable insight
is created as management frames the complete problem to be resolved. This is
where the various risks to the firm are identified and flushed out.

Time-Series and Regression Forecasting

The future is then forecasted using time-series analysis or multivariate regres-
sion analysis if historical or comparable data exist. Otherwise, other quali-
tative forecasting methods may be used (subjective guesses, growth rate
assumptions, expert opinions, Delphi method, and so forth). See Chapter 9
for details on using the author’s Risk Simulator software to run time-series
forecasts.

Base Case Net Present Value Analysis

For each project that passes the initial qualitative screens and forecasts, a
discounted cash flow model is created. This model serves as the base case
analysis, where a net present value is calculated for each project. This also
applies if only a single project is under evaluation. This net present value is
calculated using the traditional approach of using the forecast revenues and
costs, and discounting the net of these revenues and costs at an appropriate
risk-adjusted rate.

Monte Garlo Simulation

Because the static discounted cash flow produces only a single-point estimate
result, there is oftentimes little confidence in its accuracy given that future
events that affect forecast cash flows are highly uncertain. To better estimate
the actual value of a particular project, Monte Carlo simulation should be
employed next. See Chapter 9 for details on running Monte Carlo simulations
using the author’s Risk Simulator software.

Usually, a sensitivity analysis is first performed on the discounted cash
flow model. That is, setting the net present value as the resulting variable, we
can change each of its precedent variables and note the change in the result-
ing variable. Precedent variables include revenues, costs, tax rates, discount
rates, capital expenditures, depreciation, and so forth, which ultimately flow
through the model to affect the net present value figure. By tracing back all
these precedent variables, we can change each one by a preset amount and
see the effect on the resulting net present value. A graphical representation can
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then be created, which is often called a Tornado chart, because of its shape,
where the most sensitive precedent variables are listed first, in descending
order of magnitude. Armed with this information, the analyst can then de-
cide which key variables are highly uncertain in the future and which are de-
terministic. The uncertain key variables that drive the net present value and
hence the decision are called critical success drivers. These critical success driv-
ers are prime candidates for Monte Carlo simulation.! Because some of these
critical success drivers may be correlated—for example, operating costs may
increase in proportion to quantity sold of a particular product, or prices may
be inversely correlated to quantity sold—a correlated Monte Carlo simula-
tion may be required. Typically these correlations can be obtained through
historical data. Running correlated simulations provides a much closer ap-
proximation to the variables’ real-life behaviors. This step models, analyzes,
and quantifies the various risks of each project. The result is a distribution
of the NPVs and the project’s volatility (see Appendix 7A for details).

Real Options Problem Framing

Framing the problem within the context of a real options paradigm is the next
critical step. Based on the overall problem identification occurring during
the initial qualitative management screening process, certain strategic option-
alities would have become apparent for each particular project. The strate-
gic optionalities may include, among other things, the option to expand,
contract, abandon, switch, choose, and so forth. Based on the identification
of strategic optionalities that exist for each project or at each stage of the proj-
ect, the analyst can then choose from a list of options to analyze in more de-
tail.> Real options are added to the projects to hedge downside risks and to
take advantage of upside swings (see Chapter 11 for details).

Real Options Modeling and Analysis

Through the use of Monte Carlo simulation, the resulting stochastic dis-
counted cash flow model will have a distribution of values. In real options,
we assume that the underlying variable is the future profitability of the proj-
ect, which is the future cash flow series. An implied volatility of the future
free cash flow or underlying variable can be calculated through the results of
a Monte Carlo simulation previously performed. Usually, the volatility is
measured as the standard deviation of the logarithmic returns on the free cash
flows stream. In addition, the present value of future cash flows for the base
case discounted cash flow model is used as the initial underlying asset value
in real options modeling. Using these inputs, real options analysis is per-
formed to obtain the projects’ strategic option values (see Chapters 7 to 11
for details).
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Portfolio and Resource Optimization

Portfolio optimization is an optional step in the analysis. If the analysis is done
on multiple projects, management should view the results as a portfolio of
rolled-up projects because the projects are in most cases correlated with one
another and viewing them individually will not present the true picture. As
firms do not only have single projects, portfolio optimization is crucial. Given
that certain projects are related to others, there are opportunities for hedg-
ing and diversifying risks through a portfolio. Because firms have limited
budgets, have time and resource constraints, while at the same time have re-
quirements for certain overall levels of returns, risk tolerances, and so forth,
portfolio optimization takes into account all these to create an optimal port-
folio mix. The analysis will provide the optimal allocation of investments
across multiple projects.’

Reporting and Update Analysis

The analysis is not complete until reports can be generated.* Not only are re-
sults presented but also the process should be shown. Clear, concise, and
precise explanations transform a difficult black-box set of analytics into trans-
parent steps. Management will never accept results coming from black boxes
if they do not understand where the assumptions or data originate and what
types of mathematical or financial massaging takes place.

Real options analysis assumes that the future is uncertain and that man-
agement has the right to make midcourse corrections when these uncertainties
become resolved or risks become known; the analysis is usually done ahead of
time and thus, ahead of such uncertainty and risks. Therefore, when these risks
become known, the analysis should be revisited to incorporate the decisions
made or revising any input assumptions. Sometimes, for long-horizon projects,
several iterations of the real options analysis should be performed, where fu-
ture iterations are updated with the latest data and assumptions. See Chapter
12 for details on how to present real options analysis results to management.

SUMMARY

Understanding the steps required to undertake real options analyses is im-
portant because it provides insight not only into the methodology itself but
also into how it evolves from traditional analyses, showing where the tradi-
tional approach ends and where the new analytics start. The eight phases
discussed include performing a qualitative management screening process,
forecasting the future, running base case net present value or discounted cash
flow analysis, Monte Carlo simulation, real options framing, real options
modeling, portfolio optimization, as well as reporting and update analysis.
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CHAPTER 4 QUESTIONS

. What is Monte Carlo simulation?

. What is portfolio optimization?

. Why is update analysis required in a real options analysis framework?
. What is problem framing?

. Why are reports important?

Db W=



Real Options, Financial
Options, Monte CGarlo
Simulation, and Optimization

INTRODUCTION

This chapter discusses the differences between real options and financial op-
tions, understanding that real options theory stems from financial options
but that there are key differences. These differences are important to note be-
cause they will inevitably change the mathematical structure of real options
models. The chapter then continues with an introduction to Monte Carlo sim-
ulation and portfolio optimization, discussing how these two concepts relate
to the overall real options analysis process. See Chapter 9 for getting started
in using the author’s Real Options Valuation Super Lattice Solver and Risk
Simulator software for solving real options problems and running Monte
Carlo simulations.

REAL OPTIONS VERSUS FINANCIAL OPTIONS

Real options apply financial options theory in analyzing real or physical as-
sets. Therefore, there are certainly many similarities between financial and real
options. However, there are key differences, as listed in Figure 5.1. For exam-
ple, financial options have short maturities, usually expiring in several months.
Real options have longer maturities, usually expiring in several years, with
some exotic-type options having an infinite expiration date. The underlying
asset in financial options is the stock price, as compared to a multitude of
other business variables in real options. These variables may include free cash
flows, market demand, commodity prices, and so forth. Thus, when applying
real options analysis to analyzing physical assets, we have to be careful in
discerning what the underlying variable is because the volatility measures used
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FINANCIAL OPTIONS REAL OPTIONS

*  Short maturity, usually in months. * Longer maturity, usually in years.

* Underlying variable driving its value * Underlying variables are free cash flows,
is equity price or price of a financial which in turn are driven by competition,
asset. demand, management.

« Cannot control option value by * Can increase strategic option value by
manipulating stock prices. management decisions and flexibility.

* Values are usually small. * Major million and billion dollar decisions.

+ Competitive or market effects are +  Competition and market drive the value
irrelevant to its value and pricing. of a strategic option.

* Have been around and traded for more ¢ A recent development in corporate
than three decades. finance within the last decade.

* Usually solved using closed-form » Usually solved using closed-form
partial differential equations and equations and binomial lattices with
simulation/variance reduction simulation of the underlying variables,
techniques for exotic options. not on the option analysis.

* Marketable and traded security with * Not traded and proprietary in nature, with
comparables and pricing info. no market comparables.

* Management assumptions and * Management assumptions and actions
actions have no bearing on valuation. drive the value of a real option.

FIGURE 5.1 Financial Options versus Real Options

in options modeling pertain to the underlying variable. In financial options,
due to insider trading regulations, options holders cannot, at least in theory,
manipulate stock prices to their advantage. However, in real options, because
certain strategic options can be created by management, their decisions can in-
crease the value of the project’s real options. Financial options have relatively
less value (measured in tens or hundreds of dollars per option) than real op-
tions (thousands, millions, or even billions of dollars per strategic option).

Financial options have been traded for several decades, but the real op-
tions phenomenon is only a recent development, especially in the industry at
large. Both types of options can be solved using similar approaches, includ-
ing closed-form solutions, partial-differential equations, finite-differences,
binomial lattices, and simulation; but industry acceptance for real options
has been in the use of binomial lattices. This is because binomial lattices are
much more easily explained to and accepted by management because the
methodology is much simpler to understand. Chapters 6 and 7 provide step-
by-step details on how to create and solve binomial and multinominal lattices.
Finally, financial options models are based on market-traded securities and
visible asset prices making their construction easier and more objective. Real
options tend to be based on non-market-traded assets, and financially traded
proxies are seldom available. Hence management assumptions are key in valu-
ing real options and relatively less important in valuing financial options.
Given a particular project, management can create strategies that will provide
itself options in the future. The value of these options can change depending
on how they are constructed.
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In several basic cases, real options are similar to financial options. Figure
5.2 shows the payoff charts of a call option and a put option. On all four
charts, the vertical axes represent the value of the strategic option and the hor-
izontal axes represent the value of the underlying asset. The kinked bold line
represents the payoff function of the option at termination, effectively the pro-
ject’s net present value, because at termination, maturity effectively becomes
zero and the option value reverts to the net present value (underlying asset less
implementation costs). The dotted curved line represents the payoff function
of the option prior to termination, where there is still time before maturity and
hence uncertainty still exists and option value is positive. The curved line is the
net present value, including the strategic option value. Both lines effectively
have a horizontal floor value, which is effectively the premium on the option,
where the maximum value at risk is the premium or cost of obtaining the op-
tion, indicating the option’s maximum loss as the price paid to obtain it.

The position of a long call or the buyer and holder of a call option is akin
to an expansion option. This is because an expansion option usually costs
something to create or set up, which is akin to the option’s premium or
purchase price. If the underlying asset does not increase in value over time,
the maximum losses incurred by the holder of this expansion option will be

Options value Options value
LONG PUT LONG CALL
(+/4) (-1+)
Premium { _____________________ Underlying Premium {___ > Underlying
- value value
) T Gh) Gy AR
X 45 Degrees 45 Degrees” X
Options value 45 Degrees 45 Degrees Options value
SHORT PUT SHORT CALL
oA e G R e
Premium { — .. . { -------------- =
- Premium
Underlying "\ Underlying
value N value
(+-) ) (+/-)
X X

FIGURE 5.2 Option Payoff Charts
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the cost of setting up this option (e.g., market research cost). When the value
of the underlying asset increases sufficiently above the strike price (denoted X
in the charts), the value of this expansion option increases. There is unlimited
upside to this option, but the downside is limited to the premium paid for the
option. The break-even point is where the bold line crosses the horizontal
axis, which is equivalent to the strike price plus the premium paid.

The long put option position or the buyer and holder of a put option is
akin to an abandonment option. This is because an abandonment option
usually costs something to create or set up, which is akin to the option’s pre-
mium or purchase price. If the value of the underlying asset does not decrease
over time, the maximum losses incurred by the holder of this abandonment
option will be the cost of setting up this option (seen as the horizontal bold
line equivalent to the premium). When the value of the underlying asset de-
creases sufficiently below the strike price (denoted X in the charts), the value
of this abandonment option increases. The option holder will find it more
profitable to abandon the project currently in existence. There is unlimited
upside to this option but the downside is limited to the premium paid for the
option. The break-even point is where the bold line crosses the horizontal
axis, which is equivalent to the strike price less the premium paid.!

The short positions or the writer and seller on both calls and puts have
payoff profiles that are horizontal reflections of the long positions. That is,
if you overlay both a long and short position of a call or a put, it becomes a
zero-sum game. These short positions reflect the side of the issuer of the op-
tion. For instance, if the expansion and contraction options are based on some
legally binding contract, the counterparty issuer of the contract would hold
these short positions.

MONTE CARLO SIMULATION

Simulation is any analytical method that is meant to imitate a real-life system,
especially when other analyses are too mathematically complex or too diffi-
cult to reproduce. Spreadsheet risk analysis uses both a spreadsheet model
and simulation to analyze the effect of varying inputs based on outputs of
the modeled system. One type of spreadsheet simulation is Monte Carlo sim-
ulation, which randomly generates values for uncertain variables over and
over to simulate a real-life model. Chapter 9 details the use of the author’s
own Risk Simulator software and shows how Monte Carlo simulation works
in a simple and practical way.

History Monte Carlo simulation was named after Monte Carlo, Monaco,
where the primary attractions are casinos containing games of chance. Games
of chance such as roulette wheels, dice, and slot machines exhibit random be-
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havior. The random behavior in games of chance is similar to how Monte
Carlo simulation selects variable values at random to simulate a model. When
you roll a die, you know thata 1, 2, 3,4, 5, or 6 will come up, but you don’t
know which for any particular trial. It is the same with the variables that have
a known or estimated range of values but an uncertain value for any partic-
ular time or event (e.g., interest rates, staffing needs, revenues, stock prices,
inventory, discount rates).

For each variable, you define the possible values with a probability dis-
tribution. The type of distribution you select depends on the conditions sur-
rounding the variable. For example, some common distribution types are
those shown in Figure 5.3.

During a simulation, the value to use for each variable is selected ran-
domly from the defined possibilities.

Why Are Simulations Important? A simulation calculates numerous scenarios
of a model by repeatedly picking values from the probability distribution for
the uncertain variables and using those values for the event. As all those sce-
narios produce associated results, each scenario can have a forecast. Forecasts
are events (usually with formulas or functions) that you define as important
outputs of the model. These usually are events such as totals, net profit, or
gross expenses.

An example of why simulation is important can be seen in the case illus-
tration in Figures 5.4 and 5.5, termed the Flaw of Averages. It shows how an
analyst may be misled into making the wrong decisions without the use of sim-
ulation. As the example shows, the obvious reason why this error occurs is
that the distribution of historical demand is highly skewed while the cost
structure is asymmetrical. For example, suppose you are in a meeting room,
and your boss asks what everyone made last year. You take a quick poll and
realize that the salary ranges from $60,000 to $150,000. You perform a
quick calculation and find the average to be $100,000. Then, your boss tells
you that he made $20 million last year! Suddenly, the average for the group
becomes $1.5 million. This value of $1.5 million clearly in no way represents
how much each of your peers made last year. In this case, the median may be
more appropriate. Here you see that simply using the average will provide
highly misleading results.?

Normal Triangular Uniform Lognormal

A A = A

FIGURE 5.8 The Few Most Basic Distributions



114

THEORY

The Flaw of Averages

Actual 5
Inventory Held 6
Perishable Cost $100
Fed Ex Cost $175
Total Cost $100

Your company is a retailer in perishable goods and
you were tasked with finding the optimal level of
inventory to have on hand. If your inventory exceeds
actual demand, there is a $100 perishable cost
while a $175 Fed Ex cost is incurred if your inventory
is insufficient to cover the actual level of demand.
These costs are on a per unit basis. Your first
inclination is to collect historical demand data as
seen on the right, for the past 60 months. You then
take a simple average, which was found to be 5
units. Hence, you select 5 units as the optimal
inventory level. You have just committed a major
mistake called the Flaw of Averages!

The actual demand data are shown here on the right.

Rows 19 through 57 are hidden to conserve space.
Being the analyst, what must you then do?

Frequency

FIGURE 5.4 The Flaw of Averages
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Fixing the Flaw of Averages with Simulation

Simulated Average Actual Demand 8.53 Simulated Demand Range From 7.21 and 9.85
Inventory Held 9.00 Simulated Cost Range From 178.91 to 149
Perishable Cost $100 The best method is to perform a nonparametric simulation where we use the
Fed Ex Cost $175 actual historical demand levels as inputs to simulate the most probable level
Total Cost $46.88 of demand going forward, which we found as 8.53 units. Given this demand,

the lowest cost is obtained through a trial inventory of 9 units, a far cry from
the original Flaw of Averages estimate of 5 units.

Trial Inventory Total Cost Total Cost
$1,318 1400.00-
2.00 $1,143 Simulated Distribution of Total Cost
3.00 $968 1200.00
4.00 $793
5.00 $618 1000.00
6.00 $443
7.00 $268
8.00 $93 800.00-|
9.00 $47
10.00 $147 600.00-]
11.00 $247
12.00 $347 400.00
13.00 $447
14.00 $547 200,00
15.00 $647
16.00 $747
0.00+

s 20030 Bt i & Gl 7al B0 R () 16 M2 A4 6 6
Trial Inventory

FIGURE 5.5 The Need for Simulation

Continuing with the example, Figure 5.5 shows how the right inventory
level is calculated using simulation. The approach used here is called non-
parametric simulation. It is nonparametric because in the simulation approach,
no distributional parameters are assigned. Instead of assuming some preset
distribution (normal, triangular, lognormal, or the like) and assumed pa-
rameters (mean, standard deviation, and so forth) as required in a Monte
Carlo parametric simulation, nonparametric simulation uses the data them-
selves to tell the story. You can use Risk Simulator’s custom distribution to
perform nonparametric simulations.

Imagine you collect a year’s worth of historical demand levels and write
down the demand quantity on a golf ball for each day. Throw all 365 balls
into a large basket and mix it. Pick a golf ball out at random and write down
its value on a piece of paper, then place the ball back into the basket and mix
the basket again. Do this 365 times, and calculate the average. This is a sin-
gle grouped trial. Perform this entire process several thousand times, with
replacement. The distribution of these averages represents the outcome of
the simulation. The expected value of the simulation is simply the average
value of these thousands of averages. Figure 5.5 shows an example of the dis-
tribution stemming from a nonparametric simulation. As you can see, the
optimal inventory rate that minimizes carrying costs is nine units, far from
the average value of five units previously calculated in Figure 5.4.
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Figure 5.6 shows a simple example of performing a nonparametric
simulation using Excel. There are limitations on what can be performed
using Excel’s functionalities. The example shown in Figure 5.6 assumes nine
simple cases with varying probabilities of occurrence. The simulation can be
set up in three simple steps. However, the number of columns and rows may
be unmanageable because a large number of simulations are needed to obtain
a good sampling distribution. The analysis can be modified easily for the flaw
of averages example by simply listing out all the cases (the actual demand
levels) with equal probabilities on each case. Obviously, performing large-
scale simulations with Excel is not recommended. The optimal solution is to
use a software like Risk Simulator to run simulations, as shown in Figure 5.7.

Figure 5.7 shows an example of using Risk Simulator in conjunction
with an Excel spreadsheet. The highlighted cells are simulation assumption
cells, forecast result cells, and decision variable cells. For more details, consult

Simulation (Probability Assumptions)

Value Probability
Step 1: 362995 55% Here are the assumed values and their corresponding probabiliies of
The Assumptions 363522 10% occurrence. The sum of the probabilities have to add up to 100%.
252094 10%
122922 10% We then translate the assumed values into a set of
23572 3% random numbers bounded by [0,1]. For instance, for
305721 3% anormal distribution, the probability of getting a number
61877 3% between 0.00 and 0.55 is 55% and between 0.56 and
147322 3% 0.65 is 10% and so forth. This is done in Step 2 below.
179360 3%
Minimum Maximum Implied Simulate this for 100 trials and take the average. Then,

Step 2: 0.00 0.55 362994.83 CELLS $D$16:5F$24 repeat this for several thousand sets, taking the average
The Table Setup 0.56 0.65 363522.33 on every set. Then, using these thousands of simulated

0.66 0.75 252094 sets, create a probability distribution and calculate its

0.76 0.85 122922.05 corresponding descriptive statistics (mean, standard
0.86 0.88 23572.39 deviation, confidence intervals, probabilities, et cetera).
0.89 0.91 305721.43
0.92 0.94 61876.66
0.95 0.97 14732219 VLOOKUP(RAND() $D$16:37$24.3) Average 297185
0.98 1.00 179359.73 90th% 310390
Step 3: Trials Set 1 Set2 Set3 Set4 Set5 Set100  Set 1000 Set 1500 Set 2000 Set 5000
Simulate 1 147322 122922 252094 362995 362995 362995 252094 362995 61877 363522
362995 362995 362995 362995 147322 61877 61877 362995 122922 179360
3 252094 362995 362995 122922 362995 252094 61877 362995 362995 362995
4 362995 362995 252094 362995 362995 362995 61877 179360 179360 122922
5 252094 362995 363522 362995 363522 122922 363522 252094 147322 362995
6 362995 362995 363522 122922 252094 363522 362995 179360 122922 179360
7 122922 362995 363522 362995 362995 122922 122922 252094 61877 122922
8 363522 362995 362995 122922 362995 122922 122922 122922 362995 61877
9 362995 362995 362995 252094 252094 362995 362995 362995 179360 363522
10 122922 122922 363522 362995 305721 362995 252094 61877 362995 362995
" 306721 362995 362995 362995 252094 362995 252094 363522 362995 362995
12 362995 362995 362995 362995 252094 362995 362995 252094 362995 122922
Rows 13 95 252094 362995 362995 363522 362995 122922 362995 362995 252094 61877
to 94 have 96 252094 252094 61877 362995 363522 122922 23572 122922 305721 362995
been hidden 97 362995 23572 362995 362995 122922 305721 362995 362995 23572 362995
to conserve 98 362995 362995 362995 147322 362995 252094 362995 362995 362995 252094
space. 99 122922 362995 362995 362995 362995 362995 362995 147322 362995 252094
100 363522 252094 362995 362995 362995 362995 362995 362995 362995 362995
Average 275763 282681 318044 292146 300325 299948 298498 302302 296806 294590

ility Distribution of Si Output Descriptive Statistics

5 Mean 279.50

70 Median 279.34

i Mode 313.66

i} Standard Deviation 20.42
@00 Skew 0.05

S 40 5th Percentile 24534

[ 10th Percentile 253.16

& 90th Percentile 306.00
el 95th Percentile 312.71

22361 231.08 23854 246.01 25347 26093 26840 27586 28333 20079 298.26 30572 313.19 32065 32812 33558

FIGURE 5.6 Simulation in Excel
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Monte Carlo Simulation on Financial Analysis

Project A
2001 2002 2003 2004 2005 NPV $126
Revenues $1,010 $1,111  $1233  $1384  $1573 IRR 15.68%
Opex/Revenue Multiple 0.09 0.10 0.11 0.12 0.13 Risk Adjusted Discount Rate ~ 12.00%
Operating Expenses $91 $109 $133 $165 $210 Growth Rate 3.00%
EBITDA $919 $1,002  $1,100  $1219  $1,363 Terminal Value $8,692
FCF/EBITDA Multiple 0.20 025 031 0.40 0.56 Terminal Risk Adjustment 30.00%
Free Cash Flows (81,200) $187 $246 $336 5486 $760 Discounted Terminal Value ~ $2,341
Initial Investment (81,200) Terminal to NPV Ratio 18.52
Revenue Growth Rates 10.00% 11.00%  1221%  1370%  15.58% Payback Period 389
Simulated Risk Value $390
Project B
2001 2002 2003 2004 2005 NPV $149
Revenues $1,200 $1404  $1683  $2085  $2,700 IRR 33.74%
Opex/Revenue Multiple 0.09 0.10 0.1 012 013 Risk Adjusted Discount Rate ~ 19.00%
Operating Expenses $108 $138 $181 $249 $361 Growth Rate 3.75%
EBITDA $1,002 $1266  $1502  $1836  $2,340 Terminal Value $2,480
FCF/EBITDA Multiple 0.10 0.11 0.12 0.14 0.16 Terminal Risk Adjustment 30.00%
Free Cash Flows (8400) $109 $139 $183 $252 $364 Discounted Terminal Value 5668
Initial Investment (8400) Terminal to NPV Ratio 4.49
Revenue Growth Rates 17.00% 19.80%  23.85%  20.53%  38.25% Payback Period 283
Simulated Risk Value $122
Project C
2001 2002 2003 2004 2005 NPV $29
Revenues $950 $1060  $1219  $1415  $1678 IRR 15.99%
Opex/Revenue Multiple 0.13 0.15 017 0.20 024 Risk Adjusted Discount Rate ~ 15.00%
Operating Expenses $124 $157 $205 278 $395 Growth Rate 5.50%
EBITDA $827 $912  $1014  $1136  $1283 Terminal Value §7,935
FCF/EBITDA Multiple 0.20 025 031 0.40 0.56 Terminal Risk Adjustment 30.00%
Free Cash Flows (1,100) $168 $224 $309 $453 $715 Discounted Terminal Value ~ $2,137
Initial Investment (1.100) Terminal to NPV Ratio 7473
Revenue Growth Rates 12.50% 14.06%  16.04%  1861%  22.08% Payback Period 3.88
Simulated Risk Value $53
Project D
2001 2002 2003 2004 2005 NPV $26
Revenues $1,200 $1,328  $1485  $1681  $1,932 IRR 21.57%
Opex/Revenue Multiple 0.08 0.08 0.09 0.09 0.10 Risk Adjusted Discount Rate  20.00%
Operating Expenses $90 $107 $129 $159 $200 Growth Rate 1.50%
EBITDA $1,110 $1221  $1,355  $1522  $1,732 Terminal Value 52,648
FCF/EBITDA Multiple 0.14 0.16 0.19 0.23 028 Terminal Risk Adjustment 30.00%
Free Cash Flows ($750) $159 $200 $259 $346 $483 Discounted Terminal Value $713
Initial Investment (8750) Terminal to NPV Ratio 26.98
Revenue Growth Rates 10.67% 11.80%  13.20%  14.94%  17.17% Payback Period 3.38
Simulated Risk Value $56
Implementation Cost Sharpe Ratio Weight Project Cost  Project NPV Risk Parameter Payback Period Technology Level Tech Mix
Project A $1,200 0.02 5.14% $62 36 29% 389 5 026
Project B $400 031 2527%  $101 $38 15% 2.83 3 076
Project C $1,100 0.19 3459%  $380 $10 21% 388 2 0.69
Project D $750 0.17 3500%  $263 $9 17% 3.38 4 1.40
Total $3,450 0.17 100.00%  $806 $63 28% 349 35 311

Constraints:
Lower Barrier  Upper Barrier

Budget S0 $900 (10 percentile at top 900)
Payback Mix 0.10 1.00
Technology Mix 0.40 4.00
Per Project Mix 5% 35%

FIGURE 5.7 Monte Carlo Simulation

Chapter 9 on getting started with and using the Risk Simulator Monte Carlo
simulation software. Remember that there is also a complimentary limited
edition trial version of Risk Simulator simulation software on CD-ROM in-
cluded at the back of this book, complete with example spreadsheets and the
Real Options Valuation Super Lattice Solver trial software.

Obviously there are many uses of simulation, and we are barely scratch-
ing the surface with these examples. One additional use of simulation deserves
mention: simulation can be used in forecasting. Specifically, an analyst can
forecast future cash flows, cost, revenues, prices, and so forth using simula-
tion. Figure 5.8 shows an example of how stock prices can be forecasted using
simulation. This example is built upon a stochastic process called the Geo-
metric Brownian Motion.? Using this assumption, we can simulate the price
path of a particular stock. Three stock price paths are shown here, but in
reality, thousands of paths are generated, and a probability distribution of the



118

THEORY

Conceptualizing the Lognormal Distribution

A Simple Simulation Example

We need to perform many si

to obtain a valid

time normal value
days deviates  simulated 270 Simulated Stock Price Path |
Mean [} NA 100.0000
Sigma 1 0.0873 100.2259 220
Timing 2 -0.4320 99.4675
Starting Value 3 -0.1389 99.2652 £ 10
4 -0.4583 984649 % '\”,
" N . 120 ~
Here we see the effects of performing a simulation g _11'1’3%76 190; '29201925 2 -
of stoc_k price _palhs following a Geomelric ) 7 05577 98.2357 70
Brownian Motion model for daily closing prices. 8 0.5277 99.2838
Three sample paths are seen here, in reality, 9 -0.4844 98.4345 20
thousands of simulations are performed and their 10 -0.2307 98.0634 o 0 00y
distribution properties are analyzed. Frequentl " 0.8688 99.7832
prope : yzed. Freq Y, 12 2.1195 83.9088
the average closing prices of these thousands of 13 -1.9756 100.1461 P
simulations are analyzed, based on these 14 1.3734 102.8517
simulated price paths. 15 -0.8790 101.2112 120
16 -0.7610 99.8203
140 Simulated Stock Price Path Il 17 0.3168 100.4824 100
18 -0.0511 1004452 |
120 19 0.0653 1006301 E o
20 -0.6073 99.5368 3
g 101 21 0.6900 1009091 %
€ 22 0.7012 99.6353 60
= 23 1.4784 102.5312
% w0 24 -0.9195  100.8184 kY
25 -0.3343  100.2411
@™ 26 -2.3395 95.9465 20
27 -1.7831 92.8103 © &0 LIPS0
201 28 -0.3247 92.2958 Y
0 50 100 150 200 250 29 0.5053 93.2409
day 30 0.0386 93.3652
247 1.0418 100.9205 Rows 31 through 246 have been hidden to conserve space.
248 -0.7052 99.6388
249 0.1338 99.9521
250 0.0451 100.0978
Forecast: Average for Period 1 Forecast: Average for Period 20
5,000 Trials Frequency Chart 52 Outliers 5,000 Trials Frequency Chart 40 Outliers
024 122 I
2 018 915 — =018 I —
£ o2 £ o 60
= K I
£ £ oo AL a0
000 o 000 v v v \ \ o
65.89 83.08 100.27 117.46 134.65 70.54 88.38 106.23 124.08 141.92
Certainty is 95.00% from 74.05 to 125.81 Certainty is 90.00% from 83.53 to 127.51
Forecast Averags for Period 250 The thous.ands of snmqlateq price paths are then
5,000 Trials Frequency Chart 47 Outliers tabulated into probability dlstr_lbutuons. r-_lere_are_ three
sample price paths at three different points in time, for
o1 o periods 1, 20, and 250. There will be a total of 250
é‘ distributions for each time period, which corresponds
= o1 64 to the number of trading days a year.
& oo 32 We can also analyze each of these time-specific
000 S J L S | e probability distributions and calculate relevant statistically
75.46 93.00 110.55 128.10 145.65 valid confidence intervals for decision-making purposes.
Certainty is 99.02% from 77.38 to +Infinity
120.00 We can then graph out the
110.00 Expected Price Path confidence intervals together
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80.00
70.00
60.00
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passes.

FIGURE 5.8 Lognormal Simulation

with the expected values of
each forecasted time period.

Notice that as time increases,
the confidence interval widens
because there will be more risk
and uncertainty as more time
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outcomes can then be created. That is, for a particular time period in the
future—say, on day 100—we can determine the probability distribution of
prices on that day. We can apply similar concepts to forecasting demand,
cost, and any other variables of interest. Risk Simulator has a forecasting
module capable of running time-series forecasts, regression analysis, nonlin-
ear extrapolation, and stochastic processes. See Chapter 9 for details.

SUMMARY

This chapter reviews the similarities between financial options and real op-
tions. The most important difference is that the latter revolves around phys-
ical assets that are usually not traded in the market, as compared to highly
volatile financial assets that are actively traded in the market with shorter
maturities for financial options. Monte Carlo simulation is also introduced
as an important and integral approach when performing real options. The
example on the flaw of using simple averages shows that without the added
insights of probabilities and simulation, wrong decisions will be made.

CHAPTER 5 QUESTIONS

1. What do you believe are the three most important differences between
financial options and real options?

2. In the Flaw of Averages example, a nonparametric simulation approach
is used. What does nonparametric simulation mean?

3. In simulating a sample stock price path, a stochastic process called Geo-
metric Brownian Motion is used. What does a stochastic process mean?

4. What are some of the restrictive assumptions used in the Black-Scholes
equation?

5. Using the example in Figure 5.8, simulate a sample revenue path in
Excel, based on a Geometric Brownian Motion process, where 88, =
S,_1[wdt + oV 51]. Assume a 50 percent annualized volatility (o), mean
drift rate () of 2 percent, and a starting value (S;) of $100 on January
2002. Create a monthly price path simulation for the period January 2002
to December 2004. Use the function: “=NORMSINV(RAND( ))” in
Excel to recreate the simulated standard normal random distribution
value «.
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Behind the Scenes

INTRODUCTION

This chapter and the following two chapters introduce the reader to some
common types of real options and a step-by-step approach to analyzing them.
The methods introduced include closed-form models, partial-differential equa-
tions, and binomial lattices through the use of risk-neutral probabilities. The
advantages and disadvantages of each method are discussed in detail. In ad-
dition, the theoretical underpinnings surrounding the binomial equations are
demystified here, leading the reader through a set of simplified discussions on
how certain binomial equations are derived, without the use of fancy mathe-
matics. This chapter and the next chapter are key to understanding the fun-
damental theories underlying option valuation and should be reviewed first
before embarking on Chapters 9 to 11 where real options cases are solved
using the author’s Super Lattice Solver software and Risk Simulator software.

REAL OPTIONS: BEHIND THE SCENES

Multiple methodologies and approaches are used in financial options analysis
to calculate an option’s value. These range from using closed-form equations
like the Black-Scholes model and its modifications, Monte Carlo path-
dependent simulation methods, lattices (for example, binomial, trinomial,
quadranomial, and multinomial lattices), variance reduction and other nu-
merical techniques, to using partial-differential equations, and so forth. How-
ever, the most widely used mainstream methods are the closed-form solutions,
partial-differential equations, and the binomial lattices.

Closed-form solutions are models like the Black-Scholes, where there
exist equations that can be solved given a set of input assumptions. They are
exact, quick, and easy to implement with the assistance of some basic pro-
gramming knowledge but are difficult to explain because they tend to apply
highly technical stochastic calculus mathematics. They are also very specific

123
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in nature, with limited modeling flexibility. Closed-form solutions are exact
for European options but are only approximations for American options.
Many exotic and Bermudan options cannot be solved using closed-form
solutions. The same limitations apply to path-dependent simulations. Only
simple European options can be solved using simulations. Many exotic, Amer-
ican, and Bermudan options cannot be solved using simulation.

Real options can be calculated in different ways, including the use of
path-dependent simulation, closed-form models, partial-differential
equations, and multinomial and binomial approaches.

Binomial lattices, in contrast, are easy to implement and easy to explain.
Lattices can solve all types of options, including American, Bermudan, Euro-
pean, and many types of exotic options, as will be seen in later chapters. They
are also highly flexible but require significant computing power and lattice
steps to obtain good approximations, as we will see later in this chapter. It
is important to note, however, that in the limit, results obtained through the
use of binomial lattices tend to approach those derived from closed-form so-
lutions. The results from closed-form solutions may be used in conjunction
with the binomial lattice approach when presenting to management a com-
plete real options solution. In this chapter, we explore these mainstream ap-
proaches and compare their results as well as when each approach may be best
used, when analyzing the more common types of financial and real options.

American options are exercisable at any time prior to and including
maturity. European options are exercisable only at maturity and not
before. Bermudan options are exercisable at any time prior to and
including maturity except during specific vesting or blackout periods.
Options are also divided into plain-vanilla types (simple combina-
tions of calls and puts) and exotic types (all others).

Here is an example to illustrate the point of binomial lattices approaching
the results of a closed-form solution. Let us look at a European Call Option as
calculated using the Generalized Black-Scholes model® specified below:

In(S/X )+ (rf—q+a2/2)T In(S/X )+ (rf—q—a2/2)T
Call=Se 1D ® oNT —Xe MNP oNT
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Let us assume that both the stock price (S) and the strike price (X) are
$100, the time to expiration (T) is one year, with a 5 percent risk-free rate
(rf) for the same duration, while the volatility (o) of the underlying asset is
25 percent with no dividends (g). The Generalized Black-Scholes calculation
yields $12.3360, while using a binomial lattice we obtain the following results:

N = 10 steps $12.0923
N = 20 steps $12.2132
N = 50 steps $12.2867
N = 100 steps $12.3113
N = 1,000 steps $12.3335

N = 10,000 steps $12.3358
N = 50,000 steps $12.3360

Notice that even in this oversimplified example, as the number of time-steps
(N) gets larger, the value calculated using the binomial lattice approaches the
closed-form solution. Do not worry about the computation at this point as
we will detail the stepwise calculations in a moment. Suffice it to say, many
steps are required for a good estimate using binomial lattices. It has been
shown in past research that 100 to 1,000 time-steps are usually sufficient for
a good valuation.

We can define time-steps as the number of branching events in a lattice.
For instance, the binomial lattice shown in Figure 6.1 has three time-steps,
starting from time 0. The first time-step has two nodes (Sy# and S,d), while
the second time-step has three nodes (Syu?, Syud, and S,d?), and so on. There-
fore, as we have seen previously, to obtain 1,000 time-steps, we need to cal-
culate 1, 2, 3 ... 1,001 nodes, which is equivalent to calculating 501,501
nodes. If we intend to perform 10,000 simulation trials on the options cal-
culation, we will need approximately 5 X 10° nodal calculations, equivalent
to 299 Excel spreadsheets or 4.6 GB of memory space. Definitely a daunting
task, to say the least, and we clearly see here the need for using software to
facilitate such calculations.? One noteworthy item is that the lattice is some-
thing called a recombining lattice, where at time-step 2, the middle node
(Soud) is the same as time-step 1’s lower bifurcation of Syu and upper bi-
furcation of Syd.

Figure 6.2 is an example of a two time-step binomial lattice that is non-
recombining. That is, the center nodes in time-step 2 are different (Syud’ is not
the same as Sydu’). In this case, the computational time and resources are even
higher due to the exponential growth of the number of nodes—specifically,
2% nodes at time-step 0, 2! nodes at time-step 1, 2% nodes at time-step 2, and
so forth, until 2199 nodes at time-step 1,000 or approximately 2 X 1030
nodes, taking your computer potentially years to calculate the entire binomial
lattice. Recombining and nonrecombining binomial lattices yield the same
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Sou’
Sou”
Sou Sou’d
So Soud
Sod Soud?
Sod*
Sod’
Time-steps _
0 1 2 '3

FIGURE 6.1 Three Time-Steps (Recombining Lattice)

Sou
S()M
Soud'
So
Sodu’
Sod
Sod?*
Time-steps
0 1 2

FIGURE 6.2 Two Time-Steps (Nonrecombining Lattice)
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results at the limit, so it is definitely easier to use recombining lattices for
most of our analysis. However, there are exceptions where nonrecombining
lattices are required, especially when there are two or more stochastic un-
derlying variables or when volatility of the single underlying variable
changes over time. Appendix 71 details the use of nonrecombining lattices
with multiple volatilities, and the use of multiple recombining lattices to
recreate a nonrecombining lattice. The examples in this appendix show that
the results from a recombining lattice are exactly the same for nonrecomb-
ing lattices. Chapters 9 and 10 show how multiple underlying assets can be
solved using the Multiple Asset Super Lattice Solver and the Multinominal
Super Lattice Solver software. However, for illustration purposes, we will
continue with single underlying asset with constant volatility examples
solved using recombining lattices throughout this chapter and the next.

As you can see, closed-form solutions certainly have computational ease
compared to binomial lattices. However, it is more difficult to explain the
exact nature of a fancy stochastic calculus equation than it would be to explain
a binomial lattice that branches up and down. Because both methods tend to
provide the same results at the limit anyway, for ease of exposition, the bi-
nomial lattice should be presented for management discussions. There are
also other issues to contend with in terms of advantages and disadvantages
of each technique. For instance, closed-form solutions are mathematically el-
egant but very difficult to derive and are highly specific in nature. Tweaking
a closed-form equation requires facility with sophisticated stochastic mathe-
matics. Binomial lattices, however, although sometimes computationally
stressful, are easy to build and require no more than simple algebra, as we will
see later. Binomial lattices are also very flexible in that they can be tweaked
easily to accommodate most types of real options problems.

We continue the rest of the book with introductions to various types of
common real options problems and their associated solutions, using closed-
form models, partial-differential equations, and binomial lattices, wherever
appropriate. We further use, for simplicity, recombining lattices with only five
time-steps in most cases. The reader can very easily extend these five time-step
examples into thousands of time-steps using the same algorithms.

BINOMIAL LATTICES

In the binomial world, several basic similarities are worth mentioning. No
matter the types of real options problems you are trying to solve, if the bi-
nomial lattice approach is used, the solution can be obtained in one of two
ways. The first is the use of risk-neutral probabilities, and the second is the
use of market-replicating portfolios. Throughout this book, the former ap-
proach is used. An example of the market-replicating portfolio approach is
shown in Appendix 7C for the sake of completeness. The use of a replicating
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portfolio is more difficult to understand and apply, but the results obtained
from replicating portfolios are identical to those obtained through risk-neutral
probabilities. So it does not matter which method is used; nevertheless, ap-
plication and expositional ease should be emphasized.

Market-replicating portfolios’ predominant assumptions are that there
are no arbitrage opportunities and that there exist a number of traded assets
in the market that can be obtained to replicate the existing asset’s payout pro-
file. A simple illustration is in order here. Suppose you own a portfolio of pub-
licly traded stocks that pay a set percentage dividend per period. You can, in
theory, assuming no trading restrictions, taxes, or transaction costs, purchase
a second portfolio of several non-dividend-paying stocks, bonds, and other in-
struments, and replicate the payout of the first portfolio of dividend-paying
stocks. You can, for instance, sell a particular number of shares per period to
replicate the first portfolio’s dividend payout amount at every time period.
Hence, if both payouts are identical although their stock compositions are dif-
ferent, the value of both portfolios should then be identical. Otherwise, there
will be arbitrage opportunities, and market forces will tend to make them
equilibrate in value. This makes perfect sense in a financial securities world
where stocks are freely traded and highly liquid. However, in a real options
world where physical assets and firm-specific projects are being valued, finan-
cial purists would argue that this assumption is hard to accept, not to mention
the mathematics behind replicating portfolios are also more difficult to apply.

Compare that to using something called a risk-neutral probability ap-
proach. Simply stated, instead of using a risky set of cash flows and discount-
ing them at a risk-adjusted discount rate akin to the discounted cash flow
models, one can instead easily risk-adjust the probabilities of specific cash
flows occurring at specific times. Thus, using these risk-adjusted probabili-
ties on the cash flows allows the analyst to discount these cash flows (whose
risks have now been accounted for) at the risk-free rate. This is the essence
of binomial lattices as applied in valuing options. The results obtained are
identical.

Let’s now see how easy it is to apply risk-neutral valuation in a binomial
lattice setting. In any options model, there is a minimum requirement of at
least two lattices. The first lattice is always the lattice of the underlying
asset, while the second lattice is the option valuation lattice. No matter what
real options model is of interest, the basic structure almost always exists,
taking the form:

Inputs: S, X, o, T, rf, b

u=e"V" and d = efm/az I
u

ef=b) 60 _ g
b= u—d
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The basic inputs are the present value of the underlying asset (S), present
value of implementation cost of the option (X)), volatility of the natural log-
arithm of the underlying free cash flow returns in percent (o), time to expi-
ration in years (T'), risk-free rate or the rate of return on a riskless asset (7f),
and continuous dividend outflows in percent (b). In addition, the binomial
lattice approach requires two additional sets of calculations, the up and down
factors (# and d) as well as a risk-neutral probability measure (p). We see
from the foregoing equations that the up factor is simply the exponential
function of the cash flow returns volatility multiplied by the square root of
time-steps or stepping time (8¢). Time-steps or stepping time is simply the
time scale between steps. That is, if an option has a one-year maturity and
the binomial lattice that is constructed has 10 steps, each time-step has a
stepping time of 0.1 years. The volatility measure is an annualized value;
multiplying it by the square root of time-steps breaks it down into the time-
step’s equivalent volatility. The down factor is simply the reciprocal of the
up factor. In addition, the higher the volatility measure, the higher the up and
down factors. This reciprocal magnitude ensures that the lattices are re-
combining because the up and down steps have the same magnitude but
different signs; at places along the future path these binomial bifurcations
must meet.

The second required calculation is that of the risk-neutral probability,
defined simply as the ratio of the exponential function of the difference be-
tween risk-free rate and dividend, multiplied by the stepping time less the
down factor, to the difference between the up and down factors. This risk-
neutral probability value is a mathematical intermediate and by itself has no
particular meaning. One major error real options users commit is to extrap-
olate these probabilities as some kind of subjective or objective probabilities
that a certain event will occur. Nothing is further from the truth. There is no
economic or financial meaning attached to these risk-neutralized probabili-
ties save that it is an intermediate step in a series of calculations. Armed with
these values, you are now on your way to creating a binomial lattice of the un-
derlying asset value, shown in Figure 6.3.

Binomial lattices can be solved through the use of risk-neutral prob-
abilities and market-replicating portfolios. In using binomial and
multinomial lattices, the higher the number of steps, the higher the
level of granularity, and hence, the higher the level of accuracy.

Starting with the present value of the underlying asset at time zero
(So), multiply it with the up (#) and down (d) factors as shown in Figure
6.3 to create a binomial lattice. Remember that there is one bifurcation at
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FIGURE 6.8 Binomial Lattice of the Underlying Asset Value

each node, creating an up and a down branch. The intermediate branches
are all recombining. This evolution of the underlying asset shows that if the
volatility is zero, in a deterministic world where there are no uncertainties,
the lattice would be a straight line, and a discounted cash flow model will be
adequate because the value of the option or flexibility is also zero. In
other words, if volatility (¢) is zero, then the up (# = ¢”V%) and down (d =
e~oVo!) jump sizes are equal to one. It is because there are uncertainties and
risks, as captured by the volatility measure, that the lattice is not a straight
horizontal line but comprises up and down movements. It is this up and down
uncertainty that generates the value in an option. The higher the volatility
measure, the higher the difference between the up and down factors as previ-
ously defined, the higher the potential value of an option as higher uncer-
tainties exist and the potential upside for the option increases.

Chapter 7 goes into more detail on how certain real options problems
can be solved. Each type of problem is introduced with a short business case.
Then a closed-form equation is used to value the strategic option. A binomial
lattice is then used to confirm the results. The cases conclude with a summary
of the results and relevant interpretations. In each case, a limited number of
lattice steps are used to facilitate the exposition of the stepwise methodology.
The reader can very easily extend the analysis to incorporate more lattice
steps as necessary.
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THE LOOK AND FEEL OF UNCERTAINTY

In most financial analyses, the first step is to create a series of free cash flows,
which can take the shape of an income statement or statement of cash flows.
The resulting free cash flows are depicted on a time line, similar to that shown
in Figure 6.4. These cash flow figures are in most cases forecasts of the un-
known future. In this simple example, the cash flows are assumed to follow a
straight-line growth curve. Similar forecasts can be constructed using his-
torical data and fitting these data to a time series model or a regression analy-
sis. Whatever the method of obtaining said forecasts or the shape of the
growth curve, these are single-point estimates of the unknown future. Per-
forming a discounted cash flow analysis on these static cash flows provides
an accurate value of the project assuming all the future cash flows are known
with certainty—that is, no uncertainty exists, and hence, there exists zero
volatility around the forecast values.

However, in reality, business conditions are hard to forecast. Uncertainty
exists, and the actual levels of future cash flows may look more like those in
Figure 6.5. That is, at certain time periods, actual cash flows may be above,
below, or at the forecast levels. For instance, at any time period, the actual
cash flow may fall within a range of figures with a certain percent probability.
As an example, the first year’s cash flow may fall anywhere between $480

Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

T T T T T T » Time

WACC =30% FCF, = $500 FCF, = $600 FCF, = $700 FCF, = $800 FCF5 = $900

$900 Zero uncertainty = zero volatility
$800
$700
$600

$500

» Time

Year 1 Year 2 Year 3 Year 4 Year 5

This straight-line cash flow projection is the basics of DCF analysis.
This assumes a static and known set of future cash flows.

FIGURE 6.4 Straight-Line Discounted Cash Flow
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This shows that in reality, at different times, actual cash flows may be
above, below, or at the forecast value line due to uncertainty and risk.

FIGURE 6.5 Discounted Cash Flow with Simulation

and $520. The actual values are shown to fluctuate around the forecast values
at an average volatility of 20 percent.? Certainly this example provides a much
more accurate view of the true nature of business conditions, which are fairly
difficult to predict with any amount of certainty.

Figure 6.6 shows two sample actual cash flows around the straight-line
forecast value. The higher the uncertainty around the actual cash flow levels,
the higher the volatility. The darker line with 20 percent volatility fluctuates
more wildly around the forecast values. These values can be quantified using
Monte Carlo simulation. For instance, Figure 6.6 also shows the Monte Carlo
simulated probability distribution output for the 5 percent volatility line,
where 95 percent of the time, the actual values will fall between $510 and
$698. Contrast this to a 95 percent confidence range of between $405 and
$923 for the 20 percent volatility case. This implies that the actual cash flows
can fluctuate anywhere in these ranges, where the higher the volatility, the
higher the range of uncertainty. A point of interest to note is that the y-axis
on the time-series chart is the x-axis of the frequency distribution chart. Thus,
a highly volatile cash flow will have a wider y-axis range on the first chart
and a wider x-axis range on the second chart. The width of the frequency
distribution chart is measured by the standard deviation, a way to measure
volatility. Also, the area in the frequency chart is the relevant probabilities
of occurrence. Hence, standard deviation, volatility, and probability are all
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related and we can impute one from the other, as will be seen later in this
chapter and in Appendix 7A (calculating volatility).

A FIRM'S REAL OPTIONS PROVIDE VALUE
IN THE FACE OF UNCERTAINTY

As seen previously, Monte Carlo simulation can be applied to quantify the
levels of uncertainty in cash flows. However, simulation does not consider
the strategic alternatives that management may have. For instance, simula-
tion accounts for the range and probability that actual cash flows can be above
or below predicted levels but does not consider what management can do if
such conditions occur.

Consider Figure 6.7 for a moment. The area above the mean predicted lev-
els, assuming that management has a strategic option to expand into different
markets or products, or develop a new technology, means that executing such
an option will yield considerable value. Conversely, if management has the
option to abandon a particular technology, market, or development initia-
tive when operating conditions deteriorate, possessing and executing such an
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If a firm is strategically positioned to take advantage of these
fluctuations, there is value in uncertainty.

FIGURE 6.7 The Real Options Intuition
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abandonment or switching strategy may be valuable. This assumes that
management not only has the flexibility to execute these options but also has
the willingness to follow through with these strategies when the appropriate
time comes. Often, when faced with an abandonment decision, even when it
is clearly optimal to abandon a particular project, management may still be in-
clined to keep the project alive in the hopes that conditions would revert and
make the project profitable once again. In addition, management psychology
and project attachment may come into play. When the successful execution of
a project is tied to some financial remuneration, reputation, or personal strive
for merit and achievement, abandoning a project may be hard to do even
when it is clearly the optimal decision.

The value of a project’s real options requires several assumptions. First,
a financial model can be built where the model’s operating, technological,
market, and other factors are subject to uncertainty and change. These un-

Real options have strategic value only when
(i) A financial model can be built.
(i1) There is uncertainty.
(iii) Uncertainty drives project value.
(iv) Management has flexibility and strategic options.
(v) Management is rational in executing these strategic options.

certainties have to drive a project or initiative’s value. Furthermore, there ex-
ists managerial flexibility or strategic options that management can execute
along the way as these uncertainties become resolved over time, actions, and
events. Finally, management must not only be able but also willing to exe-
cute these options when it becomes optimal to do so. That is, we have to as-
sume that management is rational and execute strategies where the additional
value generated is at least commensurate with the risks undertaken. Ignoring
such strategic value will grossly underestimate the value of a project. Real
options not only provide an accurate accounting of this flexibility value but
also indicate the conditions under which executing certain strategies becomes
optimal.

Projects that are at-the-money or out-of-the-money—that is, projects with
static net present values that are negative or close to breaking even—are
most valuable in terms of applying real options. Because real options analysis
captures strategic value that is otherwise overlooked in traditional analyses,
the additional value obtained may be sufficient to justify projects that are
barely profitable.
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BINOMIAL LATTICES AS A DISCRETE
SIMULATION OF UNCERTAINTY

As uncertainty drives the value of projects, we need to further the discussion
on the nature of uncertainty. Figure 6.8 shows a cone of uncertainty, where
we can depict uncertainty as increasing over time. Notice that risk may or
may not increase over time, but uncertainty does increase over time. For in-
stance, it is usually much easier to predict business conditions a few months
in advance, but it becomes more and more difficult the further one goes into
the future, even when business risks remain unchanged. This is the nature of
the cone of uncertainty. If we were to attempt to forecast future cash flows
while attempting to quantify uncertainty using simulation, a well-prescribed
method is to simulate thousands of cash flow paths over time, as shown in
Figure 6.8. Based on all the simulated paths, a probability distribution can be
constructed at each time period. The simulated pathways were generated
using a Geometric Brownian Motion with a fixed volatility. A Geometric
Brownian Motion can be depicted as

58

5 = wu(dt) + oeV/ 8t

where a percent change in the variable S (denoted 85/S) is simply a combi-
nation of a deterministic part (u(8¢)) and a stochastic part (0eV/ 82). Here,
W is a drift term or growth parameter that increases at a factor of time-steps
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To quantify the uncertainty and forecast the actual
cash flows, multiple simulation iterations are run.

FIGURE 6.8 The Cone of Uncertainty
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8t, while o is the volatility parameter, growing at a rate of the square root
of time, and ¢ is a simulated variable, usually following a normal distribu-
tion with a mean of zero and a variance of one. Note that the different types
of Brownian Motions are widely regarded and accepted as standard assump-
tions necessary for pricing options. Brownian Motions are also widely used
in predicting stock prices.

Notice that the volatility (o) remains constant throughout several thou-
sand simulations. Only the simulated variable () changes every time.* This
is an important aspect that will become clear when we discuss the intuitive
nature of the binomial equations required to solve a binomial lattice, be-
cause one of the required assumptions in options modeling is the reliance on
Brownian Motion. Although the risk or volatility (o) in this example remains
constant over time, the level of uncertainty increases over time at a factor of
(oV/81). That is, the level of uncertainty grows at the square root of time and
the more time passes, the harder it is to predict the future. This is seen in the
cone of uncertainty, where the width of the cone increases over time even
when volatility remains constant.

Based on the cone of uncertainty, which depicts uncertainty as increas-
ing over time, we can clearly see the similar triangular shape of the cone of
uncertainty and a binomial lattice as shown in Figure 6.9. In essence, a binomial
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FIGURE 6.9 Discrete Simulation Using Binomial Lattices



138 APPLICATION

lattice is simply a discrete simulation of the cone of uncertainty. Whereas a
Brownian Motion is a continuous stochastic simulation process, a binomial
lattice is a discrete simulation process.

At the limit, where the number of steps approach infinity, the time-steps
approach zero and the results stemming from a binomial lattice approach
those obtained from a Brownian Motion process. Solving a Brownian Motion
in a discrete sense yields the binomial equations, while solving it in a continu-
ous sense yields closed-form equations like the Black-Scholes and its ancillary
models. The following few sections show the simple intuitive discrete deri-
vation of the Brownian Motion process to obtain the binomial equations.

A binomial lattice is a type of discrete simulation, whereas a Brown-
ian Motion stochastic process is a continuous simulation.

As a side note, multinomial models that involve more than two bifurca-
tions at each node, such as the trinomial (three-branch) models or quadra-
nomial (four-branch) models or pentanomial (five-branch) models, require a
similar Brownian Motion process or other stochastic processes such as a
mean-reverting or jump-diffusion process, and hence are mathematically more
difficult to solve. No matter how many branches are at each node, these mod-
els provide exactly the same results at the limit, the difference being that the
more branches at each node, the faster the results are reached. For instance, a
binomial model may require a hundred steps to solve a particular real options
problem, while a trinomial model probably only requires half the number of
steps. However, due to the complexity involved in solving trinomial lattices
as compared to the easier mathematics required for binomial lattices, most
real options problems are more readily solved using binomials. For the sake
of completeness, Appendix 7H provides an example of how to solve a trino-
mial lattice. Chapters 9 and 10 illustrate the trinomial, quadranomial, and
pentanomial lattices in action, using the author’s Multinomial Super Lattice
Solver software.

To continue the exploration into the nature of binomial lattices, Figure
6.10 shows the different binomial lattices with different volatilities. This
means that the higher the volatility, the wider the range and spread of values
between the upper and lower branches of each node in the lattice. Because bi-
nomial lattices are discrete simulations, the higher the volatility, the wider the
spread of the distribution. This can be seen on the terminal nodes, where the
range between the highest and lowest values at the terminal nodes is higher for
higher volatilities than the range of a lattice with a lower volatility.

At the extreme, where volatility equals zero, the lattice collapses into a
straight line. This straight line is akin to the straight-line cash flow model



Behind the Scenes 139

Sou®

So ut
So uw s Soudd
. . 2 0
The higher the uncertainty, 400.0 Sou Y So wid
. . 2
the wider the lattice. $o < M 5 Sou'd?
S5 Sod So 12d?
ot/ So ud? s Soud?
So a? 0
4 So a?
5 v Volatility = 5% @ ! Soud®
So
3
S u Soutd .e a 56
u2 SO 0
Sou 3
400.0 ' % " 5
3 2 S Sou
S S vd Soud? S it ‘
ud S S, v S Soutd
Sod 1242 Sou # 5o e Sou’d?
S 4(;(10 o % 2 s o
Py ud?® Sould® 0 S ud Sdg2 u;d Sou?d
e So u 0
5“3 2 Sy ud® Soud*
ud P s
So 0
3 . @ S9d°
a Soud* Volatility = 0% o

Volatility = 20% So
. ¢
] With zero volatility, you can show that
Sod® the binomial lattice valuation collapses
into the DCF calculation.

FIGURE 6.10 Volatility and Binomial Lattices

shown in Figure 6.4. We will further show through an example that for a bi-
nomial lattice calculation involving cash flows with zero volatility, the results
approach those calculated using a discounted cash flow model’s net present
value approach. This is important because if there is zero uncertainty and
risk, meaning that all future cash flows are known with absolute certainty,
then there is no strategic real options value. The discounted cash flow model
will suffice because business conditions are fraught with uncertainty, and
hence volatility exists and can be captured using a binomial lattice. Therefore,
the discounted cash flow model can be seen as a special case of a real options
model, when uncertainty is negligible and volatility approaches zero. Hence,
discounted cash flow is not necessarily wrong at all; it only implies zero un-
certainty in the future forecast of cash flows.

RISK VERSUS UNCERTAINTY, VOLATILITY
VERSUS DISCOUNT RATES

Risk versus Uncertainty

Up to this point, the terms risk and uncertainty have been loosely used and de-
fined. However, it is crucial to understand that there are significant differences
when we apply these terms to real options. Risk and uncertainty are very dif-
ferent species of animals but they are of the same family and genus; however,
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the lines of demarcation are often blurred. A distinction is critical at this junc-
ture before proceeding and worthy of segue.

To loosely illustrate their differences, suppose I am senseless enough to
take a sky-diving trip with a good friend, who also is equally senseless, and
we board a plane headed for the Palm Springs desert. After a 30-minute sky-
diving crash course, we are airborne at 12,000 feet and, watching our lives
flash before our eyes, we realize that in our haste we forgot to pack our para-
chutes on board. However, there is an old, dusty, and dilapidated emergency
parachute on the plane (with a few holes in it). At that point, both my friend
and I have the same level of uncertainty—the uncertainty of whether the old
parachute will open and if it does not, whether we will fall to our deaths.
However, being the risk-averse, nice guy I am, I decide to let my buddy take
the plunge. Clearly, he is the one taking the plunge and the same person tak-
ing the risk. I bear no risk at this time while my friend bears all the risk. How-
ever, we both have the same level of uncertainty as to whether the parachute
will actually fail. In fact, we both have the same level of uncertainty as to the
outcome of the day’s trading on the New York Stock Exchange—which has
absolutely no impact on whether we live or die that day. Only when he jumps
and the parachute opens will the uncertainty become resolved through the
passage of time, events, and action. However, even when the uncertainty is
resolved with the opening of the parachute, the risk still exists as to whether
he will land safely on the ground below. Once he exits the plane, he no longer
has the risk of the plane crashing but I still bear the risk of going down with
the plane—we have in essence traded risks but our uncertainties are still the
same, that is, he and I both are uncertain if the pilot will land the plane safely
albeit my life is on the line while he’s watching on the ground as the plane
crashes and burns.

Uncertainty is different from risk. Uncertainty becomes resolved
through the passage of time, events, and action. Risk is something one
bears and is the outcome of uncertainty. Risk may remain constant
but uncertainty will increase over time. The terms uncertainty and risk
are sometimes used interachangeably and can be divided into the
known, unknown, and unknowable.

Therefore, risk is something one bears and is the outcome of uncertainty.
Just because there is uncertainty, there could very well be no risk. If the only
thing that bothers a U.S.-based firm’s CEO is the fluctuation in the foreign
exchange market of the Zambian Kwacha, then I might suggest shorting
some Kwachas and shifting his portfolio to U.S.-based debt. This uncertainty
if it does not affect the firm’s bottom line in any way is only uncertainty
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and not risk. This book is concerned with risk by performing uncertainty
analysis—the same uncertainty that brings about risk by its mere existence as
it impacts the value of a particular project. It is further assumed that the end
user of this uncertainty analysis uses the results appropriately, whether the
analysis is for identifying, adjusting, or selecting projects with respect to their
risks, and so forth. Otherwise, running millions of fancy simulation trials and
letting the results “marinate” will be useless. By running simulations on the
foreign exchange market of the Zambian Kwacha, an analyst sitting in a cu-
bicle somewhere in downtown San Francisco will in no way reduce the risk of
the Kwacha in the market or the firm’s exposure to the same. Only by using
the results from an uncertainty simulation analysis and finding ways to hedge
or mitigate the quantified fluctuation and downside risks of the firm’s foreign
exchange exposure through the derivatives market could the analyst be con-
strued as having performed risk analysis and risk management.

To further illustrate the differences between risk and uncertainty, suppose
we are attempting to forecast the stock price of Microsoft (MSFT). Suppose
MSFT is currently priced at $25 per share, and historical prices place the
stock at 21.89 percent volatility. Using a Brownian motion random walk
stochastic process simulation, 10,000 possible paths are created and look
something like in Figure 6.8 except that the intercept is at $25 for Year 0. Now
suppose that for the next five years, MSFT does not engage in any risky ven-
tures and stays exactly the way it is, and further suppose that the entire eco-
nomic and financial world remains constant. This means that risk is fixed and
unchanging, that is, volatility () is unchanging for the next five years. How-
ever, the same cone of uncertainty in Figure 6.8 exists. That is, the width of
the forecast intervals will still increase over time. For instance, Year 0’s fore-
cast is known and is $25. However, as we progress one day, MSFT will most
probably vary between $24 and $26. One year later, the uncertainty bounds
may be between $20 and $30. Five years into the future, the boundaries might
be between $10 and $50. So, uncertainties increase while risk remains the
same. Therefore, risk is not equal to uncertainty. This idea is of course appli-
cable to any forecasting approach whereby it becomes more and more difficult
to forecast the future albeit the same risk. Now, if risk changes over time, the
bounds of uncertainty get more complicated (e.g., uncertainty bounds of si-
nusoidal waves with discrete event jumps) and will need to be modeled with
heteroskedastic models (heteroskedasticity means volatility is assumed to be
changing over time) or in the case of real options, using nonrecombining lat-
tices (see Appendix 71 for details).

In other instances, risk and uncertainty are used interchangeably. For in-
stance, suppose you play a coin-toss game—bet $0.50 and if heads come up
you win $1 but you lose everything if tails appear. The risk here is you lose
everything because the risk is that tails may appear. The uncertainty here is
that tails may appear. Therefore, given that tails appear, I lose everything.
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Hence, uncertainty brings with it risk. Uncertainty is the possibility of an event
occurring and risk is the ramification of such an event occurring. Hence, peo-
ple tend to use these two terms interchangeably.

In discussing uncertainty, there are three levels of uncertainties in the
world: the known, the unknown, and the unknowable. The known is, of
course, what we know will occur and are certain of its occurrence (contractual
obligations or a guaranteed event); the unknown is what we do not know
and can be simulated. These events will become known through the passage
of time, events, and action (the uncertainty of whether a new drug or technol-
ogy can be developed successfully will become known after spending years
and millions on research programs—it will either work or not, and we will
know this in the future), and these events carry with them risks but these
risks will be reduced or eliminated over time. However, unknowable events
carry both uncertainty and risk that the totality of the risk and uncertainty
may not change through the passage of time, events, or actions. These are
events such as when the next tsunami or earthquake will hit, or when another
act of terrorism will occur around the world. When an event occurs, uncer-
tainty becomes resolved but risk still remains (another one may or may not
hit tomorrow). In discounted cash flow analysis, we care about the known
factors. In real options analysis, we care about the unknown and unknowable
factors. The unknowable factors are easy to hedge—get the appropriate in-
surance! That is, don’t do business in a war-torn country, get away from po-
litically unstable economies, buy or create hazard and business interruption
strategies and insurance, and so forth. It is the unknown factors that real op-
tions will provide the most significant amount of value.

In real options analysis, when we say uncertainty, we simulate this uncer-
tainty with Monte Carlo simulation. The interactions of these uncertainties
will ramify themselves through a discounted cash flow model. The resulting
cash flows used are the result of the distilled interactions of all uncertainties
in the financial model, and are used to compute the volatility, or the risk of the
project or asset. For instance, we can simulate the probability of technical
success or market share or price of a product in the market as these are un-
certainties. I do not know what the market share will be but the best indica-
tion is that it will fluctuate between 30 percent and 35 percent, so we simulate
this uncertainty. Until we bring this uncertainty back into the model (i.e., 30
percent market share means a 10 percent reduction in total revenues, while
a 35 percent market share means a 5 percent increase in total revenues, and
so forth), we have no idea what its effects are. Applying simulation on all
uncertainties and tying them back into the financial model will then yield the
net effects of these uncertainties on cash flows. The risk of the project is this
net interaction of all uncertainties on the cash flow, and is computed using
volatility. This means that uncertainty is quantified using Monte Carlo sim-
ulation, which is then converted into risk when modeled in the DCF analysis,
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and the outcome is the project’s volatility, the measurement of risk of the
project, which is then used in a real options analysis, where these risks are
hedged (abandonment, sequential compound options, and options to wait) or
taken advantage of (expansion and execution options). The variable that ties
all these things together is volatility—for technical details on computing
volatility, see Appendix 7A.

Discount Rates

Another related item in the discussion of risk, uncertainty, and volatility is that
of discount rates. In a discounted cash flow model, the old axiom of “high
risk, high return” is seen through the use of a discount rate. That is, the higher
the risk of a project, the higher the discount rate should be to risk-adjust this
riskier project so that all projects are comparable. Of course, the infamous
capital asset pricing model (CAPM) is often used to compute the appropriate
discount rate for a discounted cash flow model (weighted average cost of
capital, hurdle rates, multiple asset pricing models, and arbitrage pricing mod-
els are the other alternatives but are based on similar principles).

Recall that the CAPM uses a beta () coefficient—a measure of system-
atic undiversifiable risk relative to the capital markets—to compute the ap-
propriate discount rate. The 3 coefficient is calculated simply as the covariance
(cov) of the asset (i) and the market’s (m) returns cov(r,r,,), divided by the
variance of the market returns var(r,,). Further, covariance can be broken
down into the products of correlation p;,,, and the standard deviations of
the asset (0;) and the market (o,,) or

_ COU(riarm)_ pi,mcio-m

var(r,)  ©2

There are many problems with computing the CAPM discount rate using
these traditional approaches. For instance, if the company is not publicly
traded, there are no stock returns to calculate the § coefficient. The firm may
also have projects that are not highly diversified, meaning that using the di-
versified market as a proxy for the risks inherent in a single project is unjusti-
fied. For instance, a large firm like Microsoft may have hundreds or thousands
of small projects, business units, and investments in its corporate portfolio,
and saying that the risk inherent in one of its projects can be wholly explained
by the fluctuations of its stock prices in the market (stock price returns are
used to calculate B) is very dangerous. Not to mention that stock prices
change every few minutes, meaning that 8 changes every few minutes and is
relatively unstable over different time horizons. Also, stock prices fluctuate
in the market due to investor overreaction, advent of news and events, eco-
nomic conditions, and many other factors not directly attributable to the risk
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of the single project being analyzed. Next, using the weighted average cost of
capital (WACC) or a corporate hurdle rate—both of which rely on the CAPM
as a basis—by themselves across all projects in a firm will be disastrous. It
penalizes less risky projects by discounting them at a higher rate than may
be required, while it biases the firm toward choosing riskier projects (as higher
risks usually bring higher returns, discounting these risky projects at a lower
rate will make the projects look more profitable than they really are).

This author recommends a new and novel approach to modify the tradi-
tional approaches to discount rate determination—not to replace the old
methodologies per se, but to add to them and to enhance their validity—by
applying two advanced analytical techniques: Monte Carlo simulation and
real options analysis. Using the underlying theory of CAPM, we can estimate
a project’s discount rate through Monte Carlo simulation and real options
analysis to obtain the correlation between, and the volatilities of the project
and an internal corporate portfolio. Then, all other projects in the firm are
combined to create the company’s cumulative portfolio discounted cash
flow. Sometimes, the company’s cash flows from an annual report are used
(as the company is made up of a portfolio of different projects, business units,
and so forth, the total cash flows to a company is the project’s internal mar-
ket comparable). In other cases, a set of comparable internal projects can be
selected as the market benchmark. This portfolio is used as the market com-
parable portfolio for the project. The volatility of the portfolio can be similarly
calculated by applying Monte Carlo simulation, as applied to obtain the
volatility of the project (see Appendix 7A). The correlation between the net
cash flows of the project and portfolio are obtained using a nonparametric
Spearman rank-based correlation coefficient. A nonparametric Spearman
rank-based correlation is used instead of the regular parametric Pearson’s
correlation coefficient because the underlying distribution of the cash flows
is probably non-normal. Also, the number of cash flow periods in the model
may be less than 30, and normality cannot be automatically assumed. Finally,
Pearson’s correlation coefficient measures a linear relationship between two
variables. The simulated cash flows may fluctuate extensively such that non-
linear relationships may exist, relationships that cannot be captured with the
Pearson’s correlation coefficient.

Using the newly calculated internal beta 37, a revised discount rate (DR)
can be calculated using

DR = WACC + Max[(B" - 1)(WACC - R,),0]

This equation means that DR has a minimum value of WACC or hurdle rate
if the B coefficient is less than or equal to 1.0. A coefficient less than or equal
to 1.0 indicates that the risk of the specific project is less than or equal to the
risk of the company’s portfolio of projects (the internal market comparable).
Under these circumstances, the WACC or company-specific hurdle rate should
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be used. For riskier projects (8 exceeding 1.0 means that the project has a
higher risk than the overall internal portfolio of projects), the excess risk
above 1.0 should be compensated at the rate differential between WACC or
hurdle rate and the risk-free rate.

To summarize, instead of using an external market-based beta coefficient
that may not fully represent the risk of a specific project, an internal beta can
be constructed based on the firm’s portfolio of projects. If the firm uses a
WACC or hurdle rate, then this rate should be applied to all projects as long
as they have an internal beta of less than or equal to 1.0. For projects with
higher risks, the relevant DR should be the WACC plus the excess returns
(alpha) sufficient to compensate for this additional risk. Otherwise, riskier
projects will be incorrectly chosen as they are discounted at a lower rate than
the required rate of return. Of course this same approach can be used to
compute the project-specific discount rate using the CAPM and not the
WACC or hurdle rate by using the calculated internal beta.

Therefore, volatility can be used to impute the discount rate, and as we
know that the discount rate is a measure of risk (high risk, high return),
volatility is hence a measure of risk. Also, we simulated the individual uncer-
tainties using Monte Carlo but the net interaction risk effects are captured
as volatility. This means that uncertainty ramifies itself as risk only if there
are tangible effects. Hence, uncertainty, risk, volatility, and discount rate can
be imputed from one another and are very closely related.

Hard Options versus Soft Options:
Adjusting for Nonmarketability of Real Options

Another related discussion about discount rates concerns the nonmar-
ketability aspect of real options. That is, unlike financial options that are
freely tradable, real options are in most cases not freely tradable or mar-
ketable. An investor can purchase a few calls and a few puts at various
strike prices and create different trading strategies like straddles, strangles,
butterflies, bull spreads, calendar spreads, and so forth, whereas a firm
with real options cannot freely purchase two coal-fired power plants at a
certain implementation cost and short another nuclear power plant at a dif-
ferent price to hedge the downside prices of electricity. Therefore, the term
hard options is used to differentiate the freely traded financial options from
soft options or options that are not liquid or marketable like real options.
Therefore, financial purists may argue that valuing real options as is may be
overestimating its value if we do not discount for its nonmarketability and
nontransferability aspects. Several approaches can be used to discount for
this nonliquid condition:

m Compute the real option and reduce it by a corresponding put option.
Put options are options where the holder can freely sell the asset in the
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market at a prespecified price during a certain contractual term. The in-
ability for a real option to have a liquid and marketable environment re-
duces its value by such a put value. Typically, the maturity is set lower
than the life of the real option to reflect the actual period where mar-
ketability is a major factor, while the strike price is set at the asset value
to reflect an instantaneous ability to sell the asset in the market at a mo-
ment’s notice, at the asset price.

m Calculate the relevant carrying cost adjustment by artificially inserting
an inflated dividend yield to convert the hard option calculation into
a soft option, thereby discounting the value of the real option. This
method is more difficult to apply and is susceptible to more subjectivity
than using a put option.

m Compute Bermudan options instead of regular American options. In
most cases, the value of an American option > Bermudan option > Euro-
pean option. Hence, instead of always relying on American-type options,
compute Bermudan options and account for certain nonmarketable,
vesting, cooling-off, or blackout periods. Doing so will reduce and adjust
the value of the option to correctly account for the nonmarketability con-
dition. This approach is preferred and is the best.

In practice, adjustments for soft options are usually never made because
as long as the approach is comparable when comparing across multiple proj-
ects, real options analysis results are robust and correct. In most cases, the rel-
ative value among projects is more important than the absolute value of a
certain project. However, to adjust for this nonmarketability soft option, sim-
ply use a higher dividend rate. In finding the relevant dividend rate to use,
one method is to calculate the weighted average cost of capital, or the cost
of money to the firm, less the risk-free rate, halve it and set it as the artifi-
cial dividend rate. To facilitate the computations throughout this book, this
adjustment to dividend is not made. Instead, the Bermudan option will be in-
troduced as a better and more objective alternative in Chapters 10 and 11. Ad-
justments using dividend rates are artificial and subjective but are still
important as can be seen in Chapter 11’s case on employee stock options
where discounting for the nonmarketability aspects of such restricted op-
tions actually can reduce a firm’s expenses by millions of dollars.

GRANULARITY LEADS TO PRECISION

Another key concept in the use of binomial lattices is the idea of steps and pre-
cision. For instance, if a five-year real options project is valued using five steps,
each time-step size (6t) is equivalent to one year. Conversely, if 50 steps are
used, then 8¢ is equivalent to 0.1 years per step. Recall that the up and down
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step sizes were "V and e~V% respectively. The smaller 8t is, the smaller the
up and down steps, and the more granular the lattice values will be.

An example is in order. Figure 6.11 shows the example of a simple Eu-
ropean financial call option. Suppose the call option has an asset value of
$100 and a strike price of $100 expiring in one year. Further, suppose that
the corresponding risk-free rate is 5 percent and the calculated volatility of
historical logarithmic returns is 25 percent. Because the option pays no div-
idends and is only exercisable at termination, a Black-Scholes equation will
suffice. The call option value calculated using the Black-Scholes equation is
$12.3360, which is obtained by

2 — 2
Call=Sd>[ In(S/X) +(rf +o /Z)T] —Xe*rf(T)q)[ In(S/X)+ (rf ~ o /Z)T]
oVT oVT
2
Call=100<1>[ In(100/100) + (0.05 + 0.25%/2)1 ]
0.25V1
_1006_0.05(1@[ In(100/100)+ (0.05 — 0.25%/2)1 ]
0.25V1

Call = 1009[0.325] — 95.13®[0.075] = 100(0.6274) — 95.13(0.5298) = 12.3360

Note that the standard-normal (®) distribution can be computed in Excel
using the function NORMSDIST.

A binomial lattice can also be applied to solve this problem, as seen in
the example in Figures 6.12 and 6.13.

» Example of a European financial call option with an asset value (S)
of $100, a strike price (X) of $100, a 1 year expiration (T), 5% risk
free rate (r), and 25% volatility (o) with no dividend payments

+ Using the Black-Scholes equation, we obtain $12.3360

o T o T

+ Using a 5 step Binomial approach, we obtain $12.79
— Step | in the Binomial approach:

2 _ 2
Ca11=s¢[1“(S/X)+(’+G /2)T]—xe*rf¢[‘“(S/X)+(r o /2)T]

Given §=100,X =100,0 =0.25,T =1,/ =0.05

u=e"" =1.1183and d = e V¥ =0.8942

i (8) _
p=" =9 05169
u—d

FIGURE 6.11 European Option Example
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The first step is to solve the binomial lattice equations, that is, to calcu-
late the up step size, down step size, and risk-neutral probability. This as-
sumes that the step size (8¢) is 0.2 years (one-year expiration divided by five
steps). The calculations proceed as follows:

u=e"Vor = 0252 = 11183

d=e Vol = ¢ 025\02 — .8942

efBrI— g 00502) _ (8942
P= T4 T 11183 —0.8942 00169

Figure 6.12 illustrates the first lattice in the binomial approach. In a real
options world, this lattice is created based on the evolution of the underlying
asset’s sum of the present values of future cash flows. However, in a finan-
cial option analysis, this is the $100 initial stock price level. This $100 value
evolves over time due to the volatility that exists. For instance, the $100
value becomes $111.8 ($100 X 1.118) on the upper bifurcation at the first
time period and $89.4 ($100 X 0.894) on the lower bifurcation. This up and
down compounding effect continues until the end terminal node, where given
a 25 percent annualized volatility, stock prices can, after a period of five
years, be anywhere between $57.2 or $174.9. Recall that if volatility is zero,

. . 174.9
Binomial Approach — Step I: K Sou®
156.4
Lattice Evolution of the Underlying G Sou*
139.8 Q
D Sou® 139.8
1251 4
L Soud
B Sou® 1254 ’
111.8 H Sou’d
10?) 0 St mse R
Py E Soud 111.8
0 100.0 M Souid?
< Soud 100.0
89.4 ! Sou?a?
Sod 89.4 s
F Soud? 89.4
79.9 N Sou?d?
Sod? 79.9
J Soud?
71.5 T
Sod® 715
0o Soud*
63.9
Sod*
u
57.2
Sod®

FIGURE 6.12 FEuropean Option Underlying Asset Lattice
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then the lattice collapses into a straight line, where at every time-step interval,
the value of the stock will be $100. It is when uncertainty exists that stock
prices can vary within this $57.2 to $174.9 interval. See Appendix 71 for
computing the objective probabilities of certain nodes occurring.

Notice on the lattice in Figure 6.12 that the values are path-independent.
That is, the value on node H can be attained through the multiplication of
Sou*d, which can be arrived at by going through paths ABEH, ABDH, or
ACEH. The value of path ABEH is S X u X d X u, the value of path ABDH
is S X u X u X d, and the value of path ACEH is § X d X u X u, all of which
yields Syu*d.

Figure 6.13 shows the calculation of the European option’s valuation lat-
tice. The valuation lattice is calculated in two steps, starting with the terminal
node and then the intermediate nodes, through a process called backward in-
duction. For instance, the circled terminal node shows a value of $74.9, which
is calculated through the maximization between executing the option and let-
ting the option expire worthless if the cost exceeds the benefits of execution.
The value of executing the option is calculated as $174.9 — $100, which yields
$74.9. The value $174.9 comes from Figure 6.12’s (node P) lattice of the un-
derlying, and $100 is the cost of executing the option, leaving a value of $74.9.

Maximum between executing the option or letting it expire

Binomial Approach - Step II:

Letting it expire = $0 (expires out-of-the-money worthless)
Executing the option = Sgu® — X = $174.9 - $100 = $74.9

Option Valuation Lattice

Intermediate Value = [P(41.8)+(1-P)(16.2)] exp(-rf*dt) = $29.2 57.4 Max [$74.9, 0]
41.8
19.6 261
12.79 16.2
: 11.8
9.8
6.1
5.8
3.1
1.6 0.0
0.0
0.0
0.0
0.0
0.0

FIGURE 6.13 FEuropean Option Valuation Lattice
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The second step is the calculation of intermediate nodes. The circled in-
termediate node illustrated in Figure 6.13 is calculated using a risk-neutral
probability analysis. Using the previously calculated risk-neutral probability
of 0.5169, a backward induction analysis is obtained through

[(p)up + (1 — p)downlexp|(—riskfree)(5t)]
[(0.5169)41.8 + (1 — 0.5169)16.2]exp[(—0.05)(0.2)] =29.2

Using this backward induction calculation all the way back to the starting
period, the option value at time zero is calculated as $12.79.

Figure 6.14 shows a series of calculations using a Black-Scholes closed-
form solution, binomial lattices with different time-steps, and Monte Carlo
simulation. Notice that for the binomial lattice, the higher the number of time-
steps, the more accurate the results become. At the limit, when the number of
steps approaches infinity—that is, the time between steps (6¢) approaches
zero—the discrete simulation in a binomial lattice approaches that of a con-
tinuous simulation model, which is the closed-form solution. The famous
Black-Scholes model is applicable here because there are no dividend pay-
ments and the option is only executable at termination. When the number of
steps approaches 1,000, the results converge. However, in most cases, the
level of accuracy becomes sufficient when the number of steps reaches any-
where from 100 to 1,000. Notice that the third method, using Monte Carlo
simulation, also converges at 10,000 simulations with 100 steps.

Figure 6.15 shows another concept of binomial lattices. When there are
more time-steps in a lattice, the underlying lattice shows more granularities
and, hence, higher accuracy. The first lattice shows five steps and the second
20 steps (truncated at 10 steps due to space limitations). Notice the similar
values that occur over time. For instance, the value 111.83 in the first lattice

* Comparison of approaches
— Black-Scholes: $12.3360

— Binomial:

* N =5 steps $12.7946 ~ OVERESTIMATES
« N =10 steps $12.0932~

« N =20 steps $12.2132

: N = 50 Steps $122867 UNDERESTIMATES
* N =100 steps $12.3113

« N = 1,000 steps $12.3335 |

* N =10,000 steps $12.3358

* N =50,000 steps $12.3360 " EXACT VALUE

— Simulation: (10,000 simulations: $12.3360)
FIGURE 6.14 More Time-Steps, Higher Accuracy
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5 TIME-STEPS
100.00 139.85 156.39 174.90
111.83 125.06 139.85
89.42 100.00 111.83
71.50 79.96 89.42

63.94 71.50
57.18

20 TIME-STEPS

100.00 105.75 118.26 125.06 132.25 139.85 147.89 156.39 165.39 174.90

94.56 100.00 105.75 111.83 118.26 125.06 13225 139.85 147.89 156.39
94.56 105.75 111.83 118.26 125.06 13225 139.85

84.56 89.42 94.56 100.00 105.75 111.83 118.26 125.06

84.56 89.42 94.56 100.00 105.75 111.83

75.62 79.96 84.56 89.42 94.56 100.00

71.50 75.62 79.96 84.56 89.42

67.62 71.50 75.62 79.96

63.94 67.62 71.50

60.46 63.94

57.18

FIGURE 6.15 More Steps, More Granularity, More Accuracy

occurs at step 1 versus step 2 in the second lattice. All the values in the first
lattice recur in the second lattice, but the second lattice is more granular in the
sense that more intermediate values exist. As seen in Figure 6.14, the higher
number of steps means a higher precision due to the higher granularity.

AN INTUITIVE LOOK AT THE
BINOMIAL EQUATIONS

The following discussion provides an intuitive look into the binomial lattice
methodology. Although knowledge of some stochastic mathematics and
Martingale processes is required to fully understand the complexities involved
even in a simple binomial lattice, the more important aspect is to understand
how a lattice works, intuitively, without the need for complicated math.
Recall that there are two sets of key equations to consider when calcu-
lating a binomial lattice. These equations, shown in Figure 6.16, consist of an
up/down equation (which is simply the discrete simulation’s step size in a bi-
nomial lattice used in creating a lattice of the underlying asset) and a risk-
neutral probability equation (used in valuing a lattice through backward
induction). These two sets of equations are consistently applied to all real
options binomial modeling regardless of its complexity.® In Figure 6.16, we
see that the up step size () is shown as # = V%, and the down step size (d)



152 APPLICATION

u=e"Vandd =e°V =
u
LD _ g

p= u—d

* The first equation is simply a discrete simulation step size used in the first
lattice of the underlying.

* The second equation is a risk-neutral probability calculation.

FIGURE 6.16 The Lattice Equations

is shown as d = e~oVét, where 6 is the volatility of logarithmic cash flow re-
turns and 8t is the time-step in a lattice. The risk-neutral probability (p)
is shown as
e(rf*b)Bt _ d
b= u—d

where rf is the risk-free rate in percent, and b is the continuous dividend pay-
out in percent.

The intuition behind the lattice equations is somewhat more cumber-
some but is nonetheless important. An analyst must not only have the math-
ematical aptitude but also the ability to explain what goes on behind the
scenes when calculating a real options model. Figures 6.17 and 6.18 provide
an intuitive look and feel of the derivation of the binomial lattice equations
in a very simplified and intuitive format, as opposed to using cumbersome fi-
nancial mathematics.

As Figure 6.17 shows, in the deterministic case where uncertainty is not
built into a financial valuation model, future cash flows can be forecast using
regression analysis on historical data, using time-series analysis, or using man-
agement assumptions. However, in a stochastic case when uncertainty exists
and is built into the model, several methods can be applied, including simu-
lating a Brownian Motion. As seen earlier, Brownian Motion processes are
used in financial forecasting and option pricing models.

Starting with an Exponential Brownian Motion, where
ﬁ — ep,(ét) +oeVot

S

we can segregate the process into a deterministic and a stochastic part, where

we have
ﬁ — ep,(ﬁt)ea'a\/g

S
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Deterministic Case
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5?3 = /,t(6t)+0'£\/§

5£ — ey(éz)w‘eﬁ
S

GEOMETRIC BROWNIAN MOTION
EXPONENTIAL BROWNIAN MOTION

$900

$800

700

$600

$500

$900

$800

$700

$600

$500

oS _

TE) P—

THIS IS THE DETERMINISTIC CASE AND
ACCOUNTS FOR THE SLOPE OR GROWTH
RATE (ACCOUNTED FOR IN ESTIMATION OF

FUTURE CASH FLOWS)

U = average growth rate
&t = time between steps

Zero uncertainty = zero volatility

Year 1 Year2

Year3 Year4 Years

» Time

H—t +

Year 1 Year 2

Year 3 Year 4 Year 5

NOTE: A BROWNIAN MOTION IS AN ACCEPTED METHODOLOGY IN
FORECASTING STOCK PRICES AND VALUING DERIVATIVES, AND IS A
REQUIRED ASSUMPTION IN VALUING REAL OPTIONS.

(6t)+oe\/§

e,Li5_t)+G£\/§

‘9 ____I_____

ot

e—1—

—

SINCE WE ARE ALREADY DOING A

DISCRETE SIMULATION WHEN USING A

BINOMIAL APPROACH, THE € IS ALREADY
ACCOUNTED FOR. WHAT'S LEFT OVERIS...

e

o5t

FIGURE 6.17 Up and Down Lattice Equations
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The deterministic part of the model (e*©®?) accounts for the slope or growth
rate of the Brownian process. If you recall, in real options analysis, the un-
derlying asset variable (usually denoted S in options modeling) is the sum of
the present values of future free cash flows, which means that the growth
rates or slope in cash flows from one period to the next have already been
intuitively accounted for in the discounted cash flow analysis.® Hence, we
only have to account for the stochastic term (e*V%!), which has a highly
variable simulated term (s).

The stochastic term (e“V%) has a volatility component (¢), a time com-
ponent (8¢), and a simulated component (¢). Again, recall that the binomial
lattice approach is a discrete simulation model; we no longer need to re-
simulate at every time period, and the simulated variable (¢) drops out. The
remaining stochastic term is simply eV,

Finally, in order to obtain a recombining binomial lattice, the up and
down step sizes have to be symmetrical in magnitude. Hence, if we set the up
step size as ¢"™V%  we can set the down step size as its reciprocal, or e=7Vo,

These up and down step sizes are used in the creation of a lattice evolu-
tion of the underlying asset, the first step in a real options binomial model-
ing approach. Notice that the values on the lattice evolution of the underlying
depend on nothing more than the volatility and time-steps between nodes.
Each up and down jump size is identical no matter how far out on the lattice
you go, but the cumulative effects of these jumps increase over time. That is,
the up («) value in Figure 6.16 is the same no matter which node you are on.
However, the further out one goes, the cumulative effects (13 or #?d, etc.) in-
crease at the rate of e”% or ¢~V This means that the higher the volatil-
ity, the wider the range of observed values on the lattice. In addition, the
lower the value of the time-steps, the more granular and detailed the lattice
becomes, as shown in Figure 6.135.

The second equation for the binomial model is that of a risk-neutral
probability. The risk-neutral probability is defined in Figure 6.18 as

e(rf*b)ﬁt —d
b= u—d

Figure 6.18 shows an intuitive derivation of the risk-neutral probability,
and Figure 6.19 explains what a risk-neutral probability is and what it does.
Start with a simple example of a coin toss, where heads would yield a $1 pay-
off and tails would yield a $0 payoff. Assuming you start with a fair coin,
the expected payoff for this game would be $0.50 = 50%($1) + 50%($0).
That is, the game has a value of $0.50, where if you were risk-neutral, you
would be indifferent between betting $0.50 on the game and walking away.
If you are risk-taker, you would be willing to bet more than $0.50 on the
game, and a risk-adverse person would probably only enter into the game if
the cost of entry is less than the $0.50 expected payoff.
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P uP
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FIGURE 6.18 Risk-Neutral Probability Equation

Figure 6.18 shows a similar problem using a decision node with two bi-
furcations and their associated probabilities of occurrence. The expected value
of the binomial tree is calculated the same way as the coin toss game just de-
scribed, where the expected value of the starting point is simply (p) up +
(1 = p) down. Now, if a time line is added to the analysis—that is, if the game
takes time ¢ (e.g., a whole year) to complete—the game payoffs should be
discounted for the time value of money. If the payouts are not guaranteed val-
ues but have some risk associated with their levels, then they should be dis-
counted at a market risk-adjusted discount rate. That is, the expected starting
present value of the payoffs should be [(p) up + (1 — p) down]exp(—discount
rate)(time).” If we define dr as discount rate, ¢ as time, # as the payoff in the
event of an up condition, and d for the payoff in the event of a down condi-
tion on the binomial branch, the starting present value of this problem can be
shown as Start = [(p)u + (1 — p)d ]e—dr®,

For simplicity, if we assume that the starting value is unity, a basic and
well-accepted assumption that is used in option pricing models, then we can
rewrite the starting value as 1= [(p)u + (1 — p)d e . Multiplying both
sides with the reciprocal of e=4 yields (p)u + (1 — p)d = e¥™. Expanding
and regrouping the terms yield p(u — d) + d = e, and solving for p yields

edr(t ) d

b= u—d
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This risk-neutral probability is simply the solution for the probabilities on a
binomial lattice. As in the binomial lattice paradigm, the time is simply the
time-steps between nodes; we can denote ¢ as 6t. In addition, as will be ex-
plained later, this probability p is used in a risk-neutral world, a world where
risks have already been accounted for; hence, the discount rate dr is simply
the risk-free rate rf. Replacing these values, we get the binomial equation

o) —
u—d

However, when there are continuous streams of dividend present, this risk-
free rate is modified to risk-free rate less the dividend yield (rf — b).

FROLICKING IN A RISK-NEUTRAL WORLD

A risk-neutral world simply means that a certain variable is stripped of its
risks. In our example, the certain variable is the cash flow payouts. These cash
flow payouts can be stripped off their risks or, in common finance language,
discounted of risks by risk-adjusting in two ways. The first method is simply
to risk-adjust the cash flow payouts themselves. This implies the use of a dis-
counted cash flow method, applying the appropriate market risk-adjusted
discount rate, which is typically higher than the risk-free rate. The second
method is to adjust the probabilities that lead to the payouts, then, using the
original cash flows, discount them by the risk-free rate, not a market risk-
adjusted rate as risk has already been accounted for by the adjusted proba-
bilities and should not be double-counted. This implies the use of risk-neutral
probabilities in the binomial world. Both approaches yield the same results
when applied appropriately. As discussed earlier in this chapter, volatility,
discount rates, and probabilities can be imputed from one another. In the risk-
neutral approach, the risk-neutral probability is imputed from volatility.
And because a relevant discount rate is implied from this volatility, discount-
ing the cash flow with the risk-free rate to account for time value of money
and then discounting the risk (volatility) using the risk-neutral probability
(imputed from volatility) yields the same result as discounting the cash flow
with a single market-risk-adjusted discount rate (which is nothing but a risk-
free rate plus a risk premium).

Figure 6.19 illustrates both these risk-adjustment methods. For instance,
if the discount rate is 22.08 percent and the payoff occurs after one year,
the expected present value of the coin-toss game is [50%($1) + 50%($0)]
exp[(—22.08%)(1)] = $0.40. This $0.40 is the risk-adjusted value of the
game in present dollars, as compared to the $0.50 if the payoffs are imme-
diate. This is intuitive because a payoff that is risky and may or may not hap-
pen in a year is certainly worth less than a payoff that is certain and occurs
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ANALYSIS AS IT REDUCES THE RISK OF R
ESTIMATION ERRORS OF A RISK-ADJUSTED TIME 0 TIVE 1

DISCOUNT RATE.
FIGURE 6.19 A Risk-Neutral World

immediately. A player should be willing to enter into a bet only if the cost of
entry is lower than what the payoff is worth. This method is akin to the dis-
counted cash flow approach where the cash flows are adjusted for risk and
time by discounting them by the appropriate risk-adjusted discount rate.
Figure 6.19 also illustrates the second method, using risk-neutral prob-
abilities. Using the same game parameters, the risk-neutral probabilities can
be calculated. That is, as the expected value is calculated as $0.40, we can get
p by imputing the expected value using [(p)$1 + (1 — p)$0]exp[(—5%)(1)],
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where the risk-neutral probability p is calculated as 42 percent, compared to
the original objective probability of 50 percent. By adjusting the probabili-
ties for risk, the cash flow payoffs should then be discounted using the risk-
free rate of 5 percent. Notice that using this imputed 42 percent risk-neutral
probability, we can also calculate the expected present value of the cash flows
through [42%($1) + 58%($0)]exp[(—5%)(1)] = $0.40, the same value ob-
tained through discounting the cash flows.

The upshot is that a risky series of cash flows should be adjusted for risk,
and two methods exist to perform the risk adjustment. The cash flow series
themselves can be adjusted through a risk-adjusted discount rate; or the prob-
abilities leading to the cash flows can be adjusted and the resulting adjusted
cash flows can be discounted using a risk-free rate. The former approach is
well known and widely used in discounted cash flow models and the latter for
solving binomial lattices. The latter is preferred for real options analysis as
it avoids having to estimate project-specific discount rates at different nodes
along the binomial lattice or within the context of a decision tree analysis.

For instance, if a decision tree analysis is used (which by itself is insuffi-
cient for solving real options), then different discount rates have to be esti-
mated at each decision node at different times because different projects at
different times have different risk structures. Estimation errors will then be
compounded on a large decision tree analysis. Binomial lattices using risk-
neutral probabilities avoid this error. In addition, risk-free rates are objective
and easy to obtain, and because volatility is obtained from a robust Monte
Carlo simulation approach, the imputed risk-neutral probability is more ac-
curate, compared to guessing at the discount rate. Also, the discount rate re-
quires a market benchmark that may or may not exist in the real options
world (e.g., the beta coefficient is covariance divided by the variance of an
external or comparable market, to compute the CAPM discount rate).

One major conclusion that can be drawn using binomial lattices is that
because risk-adjusting cash flows provides the same results as risk-adjusting
the probabilities leading to those cash flows, the results stemming from a dis-
counted cash flow analysis are identical to those generated using a binomial
lattice. The only condition that is required is that the volatility of the cash
flows be zero—in other words, the cash flows are assumed to be known with
certainty. Because zero uncertainty exists, there is zero strategic option value,
meaning that the net present value of a project is identical to its expanded
net present value. Figure 6.20 illustrates this point.

Given the levels of cash flow series in Figure 6.20, the net present value is
calculated to be $1,426 after being discounted using a weighted average cost
of capital of 35 percent. This is essentially the first approach where cash flows
are risk-adjusted by this 35 percent market risk-adjusted discount rate.

The second approach is the use of a binomial lattice. Notice that the start-
ing point on a binomial lattice is the present value of future cash flows; we
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FIGURE 6.20 Solving a DCF Model with a Binomial Lattice
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arbitrarily set it as $2,426, with a corresponding $1,000 implementation
cost. This is acceptable as long as the net present value yields $1,426
($2,426 — $1,000). Starting with this $2,426 value, the binomial equations
are calculated. First, the up and down step sizes are calculated using u =
eVt = 0%V1 = 1 and d = ¢ oVt = ¢=0%V1 = 1 because volatility is assumed
to be 0 percent, and five steps are used for the five years, resulting in a time-
step 8t of 1. In addition, the risk-neutral probability is 100 percent. Recall
from Figure 6.10 that a zero volatility lattice collapses into a straight line,
there is no up or down step, hence, the risk-neutral probability is 100 percent.
The first binomial lattice shown in Figure 6.20 illustrates this situation, where
the asset evolutions in all future states are identical to the starting value.

The second lattice shows the valuation of the binomial model. The termi-
nal nodes are simply the maximization between executing the option or let-
ting it expire. The value of executing the option is $2,426 — $1,000 at every
terminal node, and the value of letting the option expire is $0. All interme-
diate nodes carry the value of the option going forward, similar to the Euro-
pean call option. For simplicity, assume a negligible risk-free rate. That is, the
value of [(p)$1,426 + (1 — p)$1,426]exp[(—0%)(1)] = $1,426 at each inter-
mediate node, going back to the starting value. In this highly simplified and
special case, the calculated net present value is identical to the value calculated
using a binomial lattice approach. In essence, a real options analysis is, at its
most basic level, similar in nature to the net present value analysis.

Figure 6.21 illustrates this condition. In a traditional financial analysis,
we usually calculate the net present value, which is nothing but benefits less
cost (first equation)—that is, benefits equal the sum of the present values of
future net cash flows after taxes, discounted at some market risk-adjusted
cost of capital; and cost equals the sum of the present values of investment
costs discounted at the risk-free rate.

Management is usually knowledgeable of net present value and the way
it is calculated. Conventional wisdom is such that if benefits outweigh costs—
that is, when the net present value is positive—one would be inclined to accept
a particular project. This is simple and intuitive enough. However, when we
turn to options theory and look at a simple call option, it is also nothing but
benefits less cost (second equation), with a slight modification.

The difference is the introduction of the @(d) multipliers behind bene-
fits and costs. Obviously, the multipliers are nothing but the respective prob-
abilities of occurrence, obtained through the discrete simulation process in
binomial lattices. Hence, in real options theory, one can very simply define the
value of an option as nothing more than benefits less costs, taking into ac-
count the risk or probabilities of occurrence for each variable, similar to using
the Black-Scholes model. In fact, the Black-Scholes model can be simplified
to the second option equation in Figure 6.21. Therefore, if there is no uncer-
tainty and the volatility is zero, which means that the probability of occur-
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NPV = Benefits —Cost
Option = Benefits ®(d,)—Cost ®(d,)
eNPV = NPV + Options Value
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FIGURE 6.21 Real Options and Net Present Value

rence is 100 percent, indicating that the forecast values are guaranteed to
occur, as in the special case, then the real options value collapses into the net
present value when both @(d) = 100%. It is easy to understand that option
value in this case is far superior to the net present value analysis if uncer-
tainty exists and volatility is not equal to zero, and hence, both @(d) are not
equal to 100 percent. Finally, we can say that the expanded net present
value (eNPV) or total strategic value shown as the third equation is the sum
of the deterministic base case net present value and the strategic options value.
The options value takes into account the value of flexibility, that is, the abil-
ity to execute on a strategic option but not the obligation to do so; the eNPV
accounts for both base-case analysis and the added value of flexibility. Fig-
ure 6.21 illustrates that options can be used to hedge downside risk and to
capitalize on the upside uncertainties. Thus, truncating the left tail of the dis-
tribution moves the mean (expected returns) to the right and reduces the
standard deviation and width (risk). Hence, real options provide risk reduc-
tion and value enhancement to projects and assets.

SUMMARY

The binomial approach, partial-differential equations, and closed-form solu-
tions are the mainstream approaches used in solving real options problems.
The binomial approach is favored due to its mathematical simplicity and ease
of exposition. It helps make the black box more transparent and, in turn, the
results more palatable to senior management. In addition, the mathematics in-
volved in calculating a binomial lattice—that is, the use of up/down jumps as
well as risk-neutral probabilities—can be easily and intuitively explained with-
out the use of often intractable stochastic mathematical techniques applied in
partial-differential equations and closed-form solutions.
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CHAPTER 6 QUESTIONS

1. Why does solving a real options problem using the binomial lattices ap-
proach the results generated through closed-form models?

2. Is real options analysis a special case of discounted cash flow analysis, or

is discounted cash flow analysis a special case of real options analysis?

. Explain what a risk-neutral probability means.

4. What is the difference between a recombining lattice and a nonrecom-
bining lattice?

5. Using the example in Figures 6.12 through 6.14, create and value the
same European option using 10 time-steps. Verify that your answers
match those given in Figure 6.14.

W
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Real Options Models

INTRODUCTION

This chapter provides step-by-step examples of solving real options models.
The common types of real options solved include abandonment, expansion,
contraction, chooser, switching, compound, changing strikes, and volatility
options. Chapters 8 to 11 will discuss more advanced types of options in-
cluding switching, timing, multiphased sequential compound, complex cus-
tom, and barrier options. The examples in this chapter are useful as building
blocks for solving more complicated real options models. The examples
used here are intentionally kept simple, for expositional purposes. More ad-
vanced technical examples are provided in the appendixes. These examples are
again revisited in Chapters 9 to 11 and solved using the enclosed Real Op-
tions Valuation Super Lattice Solver software and Risk Simulator software.

OPTION TO ABANDON

Suppose a pharmaceutical company is developing a particular drug. However,
due to the uncertain nature of the drug’s development progress, market de-
mand, success in human and animal testing, and FDA approval, management
has decided that it will create a strategic abandonment option. That is, at any
time period within the next five years of development, management can re-
view the progress of the research and development effort and decide whether
to terminate the drug development program. After five years, the firm would
have either succeeded or completely failed in its drug development initiative,
and there exists no option value after that time period. If the program is ter-
minated, the firm can potentially sell off its intellectual property rights of the
drug in question to another pharmaceutical firm with which it has a contrac-
tual agreement. This contract with the other firm is exercisable at any time
within this time period, at the whim of the firm owning the patents. This op-
tion is obtained by the firm paying an amount up front to this counterparty.
The question is: How much is this downside insurance or abandonment op-
tion worth in fair-market terms?

163
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Using a traditional discounted cash flow model, the present value of the
expected future cash flows discounted at an appropriate market risk-adjusted
discount rate is found to be $150 million. Using Monte Carlo simulation, the
implied volatility of the logarithmic returns on future cash flows (see Appen-
dix 7A) is found to be 30 percent. The risk-free rate on a riskless asset for the
same time frame is 5 percent, and the abandonment contract stipulates that
you will get $100 million if the patents are sold within the next five years. For
simplicity, assume that this $100 million salvage value is fixed for the next five
years. You attempt to calculate how much this abandonment option is worth
and how much this drug development effort on the whole is worth to the firm.
You decide to use a closed-form approximation of an American put option be-
cause the option to abandon the drug development can be exercised at any
time up to the expiration date. You also decide to confirm the value of the
closed-form analysis with a binomial lattice calculation. Figures 7.1 and 7.2
show the results of your analysis using a binomial approach. Using the Bjerk-
sund closed-form American put option approximation equation (available in
the Super Lattice Solver software), you calculate the value of the American op-
tion to abandon as $6.9756 million. However, using the binomial approach,
you calculate the value of the abandonment option as $6.6412 million using
5 time-steps and $7.0878 million using 1,000 time-steps, thereby verifying the
results obtained.! An example of the first lattice, the lattice of the underlying
asset, is shown in Figure 7.1.

672.2
Binomial Approach — Step I: 1050 Sou®
. . . Sou
Lattice Evolution of the Underlying 368.9
Sou’
368.9
273.3 Sou'd
Sou? 2733
202.5 Sould
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FIGURE 7.1 Abandonment Option (Underlying Asset Lattice)
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All the required calculations and steps in Figure 7.1 are based on the up
factor, down factor, and risk-neutral probability analysis previously alluded
to in Chapter 6. The up factor is calculated to be 1.3499, and the down fac-
tor is 0.7408. Hence, starting with the underlying value of $150, we multi-
ply this value with the up and down factors to obtain $202.5 and $111.1,
respectively. Readers can verify for themselves the rest of the lattice calcula-
tions in Figure 7.1. The second step is to calculate the option valuation lat-
tice as shown in Figure 7.2, using the values calculated in Figure 7.1’s lattice
evolution of the underlying asset.

Creating the option valuation lattice proceeds in two steps, the valua-
tion of the terminal nodes and the valuation of the intermediate nodes using
a process called backward induction. If you recall from the first lattice, the
values are created in a forward multiplication of up and down factors, from
left to right. For this second lattice, the calculation proceeds in a backward
manner, starting from the terminal nodes. That is, the nodes at the end of the
lattice are valued first, going from right to left.

In Figure 7.2, we see that the sample circled terminal node (denoted A)
reveals a value of $672.2, which can be obtained through the value maxi-
mization of abandonment versus continuation. At the end of five years, the
firm has the option to both sell off and abandon its existing drug program or
to continue developing. Obviously, management will choose the strategy that

Maximum between Salvage value of abandonment or Continuing

Binomial Approach — Step II: Salvage Value = X = $100M

. . . Continuing = S,us = 672.2
Option Valuation Lattice OnnUNg = St

Maximum between Salvage value of abandonment or Keeping Option Open % A
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498.0
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100.0
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FIGURE 7.2 Abandonment Option (Valuation Lattice)
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maximizes profitability. The value of abandoning the drug program is equiv-
alent to selling the patent rights at the predetermined $100 million value. The
value of continuing with development can be found in Figure 7.1’s lattice evo-
lution of the underlying asset at the same node (Sy#°), which is $672.2 million.
The profit-maximizing decision is to continue development; hence, we have
the value $672.2 million on that node (denoted A). Similarly, for the terminal
node B in Figure 7.2, we see that the value of abandoning at that time is $100
million as compared to $60.9 in Figure 7.1. Hence, the decision at that node
is to abandon the project, and the profit-maximizing value of that node be-
comes the abandonment value of $100 million. This is very easy to understand
because if the underlying asset value of pursuing the drug development is high
(node A), it is wise to continue with the development. Otherwise, if circum-
stances force the value of the development effort down to such a low level as
specified by node B, then it is more optimal to abandon the project and cut the
firm’s losses (development is failing, competitor has already developed the
drug, the market is shrinking, and so forth). This of course assumes that man-
agement will execute the optimal profit-maximizing behavior of abandoning
the project when it is optimal to do so rather than hanging on to it.

Moving on to the intermediate nodes, we see that node C is calculated
as $273.3 million. At this particular node, the firm again has two options,
to abandon at that point or not to abandon, thereby keeping the option to
abandon open and available for the future in the hopes that when things seem
less rosy, the firm has the ability to execute the option and abandon the de-
velopment program. The value of abandoning is again the $100 million in
salvage value. The value of continuing is simply the discounted weighted av-
erage of potential future option values using the risk-neutral probability.

Because the risk adjustment is performed on the probabilities of future
option cash flows, the discounting can be done using the risk-free rate. That
is, for the value of keeping the option alive and open, we have [(P)($368.9) +
(1 -P)($202.5)]exp[(=rf)(dt)] = $273.3 million, which is higher than the
abandonment value. This assumes a 5 percent risk-free rate 7f, a time-step &t
of 1 (five years divided into five time-steps means each time-step is equivalent
to one year), and a risk-neutral probability P of 0.51. Using this backward
induction technique, the lattice is calculated back to the starting point to ob-
tain the value of $156.6412 million. Because the value obtained through a dis-
counted cash flow is $150 million, we can say that the difference of $6.6412
million additional value is due to the abandonment option.

By having a safety net or way out for management given dire circum-
stances, the project is worth more than its static value of $150 million. The
$150 million is the static NPV without flexibility, the $6.6412 million is the
real options value, and the combined value of $156.6412 million is the total
strategic value or ENPV (expanded NPV) or NPV+O (NPV with real options
flexibility), the correct total value of this drug development program. Clearly,
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modifications to the lattice analysis can be done to further mirror actual busi-
ness conditions. For instance, the abandonment salvage value can change over
time, which can simply be instituted through changing the salvage amount at
the appropriate times with respect to the nodes on the lattice. This could be an
inflation adjustment, a growth or decline in the value of the intellectual prop-
erty over time, etc. Chapter 10 illustrates some of these modifications to the
abandonment option (e.g., blackouts, Bermudan options, changing parame-
ters, and so forth) using the Super Lattice Solver software.

OPTION TO EXPAND

Suppose a growth firm has a static valuation of future profitability using a dis-
counted cash flow model (that is, the present value of the expected future cash
flows discounted at an appropriate market risk-adjusted discount rate) is
found to be $400 million. Using Monte Carlo simulation, you calculate the
implied volatility of the logarithmic returns on the projected future cash flows
to be 35 percent. The risk-free rate on a riskless asset for the next five years is
found to be yielding 7 percent. Suppose that the firm has the option to expand
and double its operations by acquiring its competitor for a sum of $250 mil-
lion at any time over the next five years. What is the total value of this firm as-
suming you account for this expansion option?

You decided to use a closed-form approximation of an American call
option because the option to expand the firm’s operations can be exercised
at any time up to the expiration date. You also decide to confirm the value of
the closed-form analysis with a binomial lattice calculation. Figures 7.3 and
7.4 show the results of your analysis using a binomial approach. Using the
Barone-Adesi-Whaley closed-form American call approximation equation,
you estimate the gross benchmark value of the American option to expand
as $626.6 million.> However, using the binomial approach, you calculate the
value of the expansion option as $638.3 million using 5 time-steps and $638.8
using 1,000 time-steps, thereby verifying the results obtained. The results
from the lattice approach are more accurate and should be used instead of the
closed-form models. The reader can easily verify these results using the en-
closed Super Lattice Solver software CD-ROM to run the binomial analysis
for 1,000 steps.

All the required calculations and steps in Figure 7.3 are based on the up
factor, down factor, and risk-neutral probability analysis previously alluded
to in Chapter 6. The up factor is calculated to be 1.4191, and the down fac-
tor is 0.7047 as shown in Figure 7.3. Hence, starting with the underlying
value of $400, we multiply this value with the up and down factors to obtain
$567.6 and $281.9, respectively. Readers can verify the rest of the lattice cal-
culations in Figure 7.3. Notice the similarities between the evolution lattice
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FIGURE 7.8 Expansion Option (Underlying Asset Lattice)

of the underlying asset for this expansion option and that of the abandon-
ment option.

The second step is to calculate the option valuation lattice as shown in
Figure 7.4, using the values calculated in Figure 7.3’s lattice evolution of the
underlying.

In Figure 7.4, we see that the sample circled terminal node (denoted D)
reveals a value of $4,353.7, which can be obtained through the value max-
imization of expansion versus continuation. At the end of five years, the firm
has the option to acquire the competition and expand its existing operations
or not. Obviously, management will choose the strategy that maximizes prof-
itability. The value of acquiring and expanding its operations is equivalent
to doubling its existing capacity of $2,301.8 at the same node shown in Fig-
ure 7.3. Hence, the value of acquiring and expanding the firm’s operations
is double this existing capacity less any acquisition costs, or 2($2,301.8) —
$250 = $4,353.7 million.

The value of continuing with existing business operations can be found
in Figure 7.3’s lattice evolution of the underlying, at the same node (Sy°),
which is $2,301.8 million. The profit-maximizing decision is to acquire the
firm for $250 million, and hence, we have the value $4,353.7 million on that
node (denoted D). Similarly, for the terminal node E in Figure 7.4, we see that
the value of continuing existing operations at that time is $69.5 million as seen
in Figure 7.3. In comparison, by expanding its operations through acquisition,
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the value is only 2($69.5) — $250 = —$111 million. Hence, the decision at
that node is to continue with existing operations without expanding, and the
profit-maximizing value on that node is $69.5 million. This is intuitive be-
cause the underlying asset value of pursuing existing business operations is
such that if it is very high based on current market conditions (node D), then
it is wise to double the firm’s operations through acquisition of the com-
petitor. Otherwise, if circumstances force the value of the firm’s operations
down to such a low level as specified by node E, then it is more optimal to
continue with the existing business and not worry about expanding because
the project will be a loser at that point.

Moving on to the intermediate nodes, we see that node F is calculated
as $1,408.4 million. At this particular node, the firm again has two options,
to expand its operations at that point or to keep the option to expand open
for the future in the hopes that when the market is up, the firm has the abil-
ity to execute the option and acquire its competitor. The value of expanding
at that node is 2($805) — $250 = $1,361 million (rounded). The value of con-
tinuing is simply the discounted weighted average of potential future option
values using the risk-neutral probability. Because the risk adjustment is per-
formed on the probabilities of future option cash flows, the discounting can
be done using the risk-free rate. That is, for the value of keeping the option
alive and open, we have [(P)($2,068.8) + (1 — P)($917.9)]lexp[(—rf)(8t)] =
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$1,408.4 million, which is higher than the expansion value. This assumes
a 7 percent risk-free rate 7f, a time-step 8¢ of 1, and a P of 0.515. Using this
backward-induction technique, the lattice is calculated back to the starting
point to obtain the value of $638.30 million. As the value obtained through
a discounted cash flow is $400 million for current existing operations, the
value of acquiring the competitor today is 2($400) — $250 = $550 million,
the value of twice its current operations less the acquisition costs.

By not executing the acquisition today but still having an option for man-
agement given great market and economic outlook to acquire the competitor
then, the firm is worth more than its static value of $550 million. The $550
million is the static NPV without flexibility, the $88.30 million is the real op-
tions value, and the combined value of $638.30 million is the total strategic
value or ENPV (expanded NPV) or NPV *O (NPV with real options flexi-
bility), the correct total value of this firm. The real options value is worth an
additional 16 percent of existing business operations. If a real options ap-
proach is not used, the firm will be undervalued because it has a strategic op-
tion to expand its current operations but not an obligation to do so and will
most likely not do so unless market conditions deem it optimal. The firm has
in essence hedged itself against any potential downside if it were to acquire
the competitor immediately without regard for what may potentially happen
in the future. Having an option and sometimes keeping this option open are
valuable given a highly uncertain business environment. Clearly, to mirror
actual business conditions, the cost of acquisition can change over time, and
the expansion factor (doubling its operations) can also change as business con-
ditions change. All these variables can be accounted for in the lattice.> Chap-
ters 10 and 11 have more advanced expansion option examples solved using
the Super Lattice Solver software.

OPTION TO CONTRACT

You work for a large aeronautical manufacturing firm that is unsure of the
technological efficacy and market demand of its new fleet of long-range su-
personic jets. The firm decides to hedge itself through the use of strategic
options, specifically an option to contract 50 percent of its manufacturing
facilities at any time within the next five years. Suppose the firm has a cur-
rent operating structure whose static valuation of future profitability using
a discounted cash flow model (that is, the present value of the expected future
cash flows discounted at an appropriate market risk-adjusted discount rate)
is found to be $1 billion. Using Monte Carlo simulation, you calculate the im-
plied volatility of the logarithmic returns on the projected future cash flows
to be 50 percent. The risk-free rate on a riskless asset for the next five years is
found to be yielding 5 percent. Suppose the firm has the option to contract 50
percent of its current operations at any time over the next five years, thereby
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creating an additional $400 million in savings after this contraction. This is
done through a legal contractual agreement with one of its vendors, who has
agreed to take up the excess capacity and space of the firm, and at the same
time, the firm can scale back its existing work force to obtain this level of
savings.

A closed-form approximation of an American option can be used as a
gross approximation, because the option to contract the firm’s operations can
be exercised at any time up to the expiration date and can be confirmed with
a binomial lattice calculation. Figures 7.5 and 7.6 show the results of an
analysis using a binomial approach. Using the Barone-Adesi-Whaley closed-
form equation, you calculate the value of the American option to contract as
$102.23 million.* However, using the binomial approach, you calculate the
value of the contraction option as $105.61 million using 5 time-steps and
$102.98 million using 1,000 time-steps. Again, the results from the binomial
lattices should be used as they are more accurate than the closed-form ap-
proximation models.

All the required calculations and steps in Figure 7.5 are based on the up
factor, down factor, and risk-neutral probability analysis previously alluded to
in Chapter 6. For instance, the up factor is calculated to be 1.6487, and the
down factor is 0.6065 as shown in Figure 7.5. Hence, starting with the un-
derlying value of $1,000, we multiply this value by the up and down factors
to obtain $1,649 and $607, respectively. Readers can verify for themselves
the rest of the lattice calculations in Figure 7.5.
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FIGURE 7.8 Contraction Option (Underlying Asset Lattice)
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The second step is to calculate the option valuation lattice as shown in
Figure 7.6, using the values calculated in Figure 7.5’s lattice evolution of the
underlying asset.

In Figure 7.6, we see that the sample terminal node (denoted G) reveals
a value of $12,183, which can be obtained through the value maximization
of contraction versus continuation. At the end of five years, the firm has the
option to contract its existing operations or not, thereby letting the option
expire. Obviously, management will choose the strategy that maximizes
profitability. The value of contracting 50 percent of its operations is equiv-
alent to half of its existing operations plus the $400 million in savings. Hence,
the value of contracting the firm’s operations is 0.5($12,183) + $400 =
$6,491 million. The value of continuing with existing business operations
can be found in Figure 7.5’s lattice evolution of the underlying at the same
node (Sy#°), which is $12,183 million. The profit-maximizing decision is to
continue with the firm’s current level of operations at $12,183 million on
that node (denoted G). Similarly, for the terminal node H in Figure 7.6, we
see that the value of continuing existing operations at that time is $82 million
as seen in Figure 7.5. In comparison, by contracting its operations by 50 per-
cent, the value is 0.5($82) + $400 = $441. Hence, the decision at that node

Maximum between Contraction or Continuing with existing business
Binomial Approach - StGP Il: Contract = (Contract)Syu® + Savings = 0.5($12183M) + $400 = $6491

. . . Continuing = Syu® = $12183
Option Valuation Lattice CnnUng = Sot

Maximum between Contraction or Keeping Option Open Co‘ﬁ‘r'ﬁ\?UE

Contract = (Contract)Syu? + Savings = 0.5($2718) + $400 = $1759

7389
Keeping Option Open = [P(4481)+(1-P)(1678)] exp(-rf*dt) = $2734 OPEN Max [$12183, $6491]
4481
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1105.61 orEn 1678
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1053
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American-closed form approximation technique. CONTRACT
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FIGURE 7.6 Contraction Option (Valuation Lattice)
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is to contract operations by 50 percent and the profit-maximizing value on
that node is $441 million. This is intuitive, because if the underlying asset
value of pursuing existing business operations is such that it is very high based
on current good operating conditions (node G), then it is wise to continue its
current levels of operation. Otherwise, if circumstances force the value of the
firm’s operations down to such a low level as specified by node H, then it is
optimal to contract the existing business by 50 percent (e.g., demand falls,
economic downturn, technological failures, and so forth).

Moving on to the intermediate nodes, we see that node I is calculated as
$2,734 million. At this particular node, the firm again has two options, to
contract its operations at that point or not to contract, thereby keeping the
option to contract available and open for the future in the hopes that when
the market is down, the firm has the ability to execute the option and contract
its existing operations. The value of contracting at that node is 0.5($2,718) +
$400 = $1,759 million. The value of continuing is simply the discounted
weighted average of potential future option values using the risk-neutral prob-
ability. As the risk adjustment is performed on the probabilities of future op-
tion cash flows, the discounting can be done using the risk-free rate. That is,
for the value of keeping the option alive and open, we have [(P)($4,481) +
(1—P)($1,678)]exp[(—rf)(6¢t)] = $2,734 million, which is higher than the
contraction value. This assumes a § percent risk-free rate rf, a time-step 8¢ of
1, and a risk-neutral probability P of 0.427. Using this backward induction
technique, the lattice is back-calculated to the starting point to obtain the
value of $1,105.61 million. Because the value obtained through a discounted
cash flow is $1,000 million for current existing operations, the option value
of being able to contract 50 percent of its operations is $105.61 million. The
$1,000 million is the static NPV without flexibility, the $105.61 million is the
real options value, and the combined value of $1,105.61 million is the total
strategic value or ENPV (expanded NPV). The real options value is worth an
additional 10.56 percent of existing business operations. If a real options ap-
proach is not used, the manufacturing initiative will be undervalued. This is
the maximum value the firm should be willing to spend, on average, to ob-
tain this option (e.g., fees paid to the counterparty).

To modify the business case and make it more in line with actual business
conditions, different option types can be accounted for at once (Option to
Choose) or in phases (Compound Options). For instance, not only has the
firm the ability to contract its operations in a down market, it also has the
ability to expand its existing business in an up market, or to completely aban-
don its operations should the future outlook be bleak. These strategic options
can exist simultaneously in time or come into being in sequence over a much
longer period. With the use of binomial lattices, any and all of these conditions
can be modeled and accounted for. No matter how customized the real op-
tions analysis may get, the fundamental building blocks of binomial lattice
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modeling hold true, and these simple cases provide the reader a set of power-
ful tools to start building upon, when tackling difficult real options problems.

OPTION TO CHOOSE

Suppose a large manufacturing firm decides to hedge itself through the use
of strategic options. Specifically it has the option to choose among three strate-
gies: expanding its current manufacturing operations, contracting its manu-
facturing operations, or completely abandoning its business unit at any time
within the next five years. Suppose the firm has a current operating structure
whose static valuation of future profitability using a discounted cash flow
model (that is, the present value of the future cash flows discounted at an ap-
propriate market risk-adjusted discount rate) is found to be $100 million.
Using Monte Carlo simulation, you calculate the implied volatility of the
logarithmic returns on the projected future cash flows to be 15 percent. The
risk-free rate on a riskless asset for the next five years is found to be yielding
5 percent annualized returns. Suppose the firm has the option to contract 10
percent of its current operations at any time over the next five years, thereby
creating an additional $25 million in savings after this contraction. The ex-
pansion option will increase the firm’s operations by 30 percent with a $20
million implementation cost. Finally, by abandoning its operations, the firm
can sell its intellectual property for $100 million.

A binomial lattice calculation can be used here. Figures 7.7 and 7.8 show
the results of the analysis using a binomial approach. The real options value
is calculated as $19.03 million using five lattice steps. An example of the first
lattice, the lattice of the underlying asset, is shown in Figure 7.7. Notice that
for an option to choose like this example, no closed-form approximations are
available. The best that an analyst can do is to use the binomial lattice.

All the required calculations and steps in Figure 7.7 are based on the up
factor, down factor, and risk-neutral probability. For instance, the up factor
is calculated to be 1.1618, and the down factor is 0.8607 as shown in Figure
7.7. Hence, starting with the underlying value of $100.0, we multiply this
value by the up and down factors to obtain $116.2 and $86.1, respectively.
The reader can verify the rest of the lattice calculations in Figure 7.7.

The second step is to calculate the option valuation lattice as shown in
Figure 7.8, using the values calculated in Figure 7.7’s lattice evolution of the
underlying asset.

In Figure 7.8, we see that the sample terminal node (denoted J) reveals
a value of $255.2, which can be obtained through the value maximization
of expansion, contraction, abandonment, and continuation. At the end of five
years, the firm has the option to choose how it wishes to continue its existing
operations through these options. Obviously, management will choose the
strategy that maximizes profitability. The value of abandoning the firm’s busi-
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FIGURE 7.7 Option to Choose (Underlying Asset Lattice)

ness unit is $100 million. The value of expansion is 1.3($211.7) — $20 =
$255.2 million. The value of contracting 10 percent of its operations is equiv-
alent to 90 percent of its existing operations plus the $25 million in savings.
Hence, the value of contracting the firm’s operations is 0.9($211.7) + $25 =
$215.5 million. The value of continuing with existing business operations
can be found in Figure 7.7’s lattice evolution of the underlying at the same
node (Syu°), which is $211.7 million. The profit-maximizing decision is to
expand the firm’s current level of operations at $255.2 million on that node
(denoted J).

Similarly, for the terminal node K in Figure 7.8, we see that the value of
contracting existing operations at that time is the maximum value of $102.5
million as seen in Figure 7.8; that is, by contracting the firm’s operations by 10
percent, the value is 0.9($86.1) + $25 = $102.5 million. In comparison, con-
tinuing operations is valued at $86.1 million, the abandonment strategy is
valued at $100.0 million, and the expansion strategy is valued at 1.3($86.1) —
$20 = $91.9 million.

This is intuitive because if the underlying asset value of pursuing exist-
ing business operations is such that it is very high based on current market de-
mand (node J), then it is wise to expand the firm’s current levels of operation.
Otherwise, if circumstances force the value of the firm’s operations down to
such a low level as specified by node K, then it is more optimal to contract the
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FIGURE 7.8 Option to Choose (Valuation Lattice)

existing business by 10 percent. At any time below level K, for instance, at
node M, it is better to abandon the business unit all together.

Moving on to the intermediate nodes, we see that node L is calculated
as $158.8 million. At this particular node, the firm again has four options: to
expand, contract, abandon its operations, or not execute anything, thus keep-
ing these options open for the future. The value of contracting at that node
is 0.9(§134.9) + $25 = $146.5 million (rounded). The value of abandoning
the business unit is $100.0 million. The value of expanding is 1.3($134.9)
— $20 = $155.4 million. The value of continuing is simply the discounted
weighted average of potential future option values using the risk-neutral
probability. As the risk adjustment is performed on the probabilities of future
option cash flows, the discounting can be done using the risk-free rate. That
is, for the value of keeping the option alive and open, we have [(P)($185.8)
+ (1 — P)($134.3)]exp[(—7f)(6t)] = $158.8 million, which is the maximum
value. This assumes a 5 percent risk-free rate rf, a time-step 8¢ of 1, and a
risk-neutral probability P of 0.633. Using this backward induction technique,
the lattice is calculated back to the starting point to obtain the value of
$119.03 million. As the present value of the underlying is $100 million,
the real options value is $19.03 million. In comparison, if we use the Black-
Scholes model on the problem, we obtain an incorrect value of $14.42 million.
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If the project is analyzed separately, we get differing and misleading results
as in the following:

Abandonment option only $6.32 million

Contraction option only $15.00 million
Expansion option only $14.49 million
Sum of all individual options $35.81 million

Clearly, valuing a combination of real options by performing them indi-
vidually and then summing them yields wildly different and incorrect results.
We need to account for the interaction of option types within the same proj-
ect as we have done above. The reason why the sum of individual options does
not equal the interaction of the same options is due to the mutually exclusive
and independent nature of these specific options. That is, the firm can never
both expand and contract on the same node at the same time, or to expand
and abandon on the same node at the same time, and so forth. This mutually
exclusive behavior is captured using the chooser option. If performed sepa-
rately on a particular node in the lattice, the expansion option analysis may
indicate that it is optimal to expand, while the contraction option analysis
may indicate that it is optimal to contract, and so forth, thereby creating a
higher total value. However, in a chooser option, the interaction among the
three options precludes this from happening, and the option is not overvalued
because in the example, multiple option execution cannot occupy the same
state. However, in more advanced real options problems, this multiple inter-
action in a single state is highly desirable.

The same analysis can be further complicated by changing some para-
meters over time (changing the cost of implementation at some growth rate
correlated to the rate of inflation, changing the salvage amount that can be
obtained over time, and so forth), all of which can be easily accounted for in
the binomial lattices. See Chapter 10 for more details on modeling path de-
pendent, path independent, mutually exclusive, nonmutually exclusive, and
complex nested options.

SIMULTANEOUS COMPOUND OPTIONS

In a simultaneous compound option analysis, the value of the option de-
pends on the value of another option. For instance, a pharmaceutical com-
pany currently going through a particular FDA drug approval process has to
go through human trials. The success of the FDA approval depends heavily
on the success of human testing, both occurring at the same time. Suppose
that the former costs $900 million and the latter $500 million. Further sup-
pose that both phases occur simultaneously and take three years to complete.
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Using Monte Carlo simulation, you calculate the implied volatility of the
logarithmic returns on the projected future cash flows to be 30 percent. The
risk-free rate on a riskless asset for the next three years is found to be yielding
7.7 percent. The drug development effort’s static valuation of future prof-
itability using a discounted cash flow model (that is, the present value of the
expected future cash flows discounted at an appropriate market risk-adjusted
discount rate) is found to be $1 billion. Figures 7.9, 7.10, and 7.11 show the
calculation involved in obtaining the compound option value. Figure 7.9
shows the usual first lattice of the underlying asset, Figure 7.10 shows an in-
termediate equity lattice of the first option, and Figure 7.11 shows the option
valuation lattice of the compound option, whose valuation lattice is based
on the first option as its underlying asset.

All the required calculations and steps in Figure 7.9 are based on the up
factor, down factor, and risk-neutral probability analysis previously alluded
to in Chapter 6. For instance, the up factor is calculated to be 1.3499, and the
down factor is 0.7408 as shown in Figure 7.9. Hence, starting with the un-
derlying value of $1,000, we multiply this value with the up and down factors
to obtain $1,349.9 and $740.8, respectively. The rest of the lattice is filled in
using the same approach.

The second step involves the calculation of the intermediate or equity
lattice as seen in Figure 7.10. We see that the sample terminal node (denoted
N) reveals a value of $1,559.6, which can be obtained through the value
maximization of executing the option or not, thereby letting the option ex-
pire worthless. The value of the option is $2,459.6 — $900 = $1,559.6 million.

Binomial Approach — Step I:

Lattice Evolution of the Underlying
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FIGURE 7.9 Simultaneous Compound Option (Underlying Asset Lattice)
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FIGURE 7.10  Simultaneous Compound Option (Intermediate Equity Lattice)

The profit-maximizing value is determined using MAX[1,559.6; 0], which
yields $1,559.6 million.

Moving on to the intermediate nodes, we see that node O is calculated
as $119.6 million. At this particular node, the value of executing the option
is $740.8 — $900 = —$159.2 million. Keep in mind that the value $740.8
comes from the lattice of the underlying at the same node as seen previously
in Figure 7.9. The value of continuing is simply the discounted weighted av-
erage of potential future option values using the risk-neutral probability. As
the risk adjustment is performed on the probabilities of future option cash
flows, the discounting can be done using the risk-free rate. That is, for the
value of keeping the option alive and open, we have [(P)($231.9) + (1 — P)
($0)]exp[(—rf)(8¢]) = $119.6 million, which is the maximum of the two val-
ues. This calculation assumes a 7.7 percent risk-free rate rf, a time-step 8¢ of
1, and a risk-neutral probability P of 0.557. Using this backward induction
technique, this first equity lattice is back-calculated to the starting point to
obtain the value of $361.1 million.

The third step is to calculate the option valuation lattice as shown in
Figure 7.11. For instance, at the terminal node P, we see the value of the op-
tion as $1,059.6, which is nothing but the maximization between zero and
the option value. The option value at that node is calculated as $1,559.6 —
$500 = $1,059.6 million. Notice that the value $1,559.6 comes directly from
the equity lattice in Figure 7.10 and not from the underlying asset lattice in
Figure 7.9. This is because the underlying asset of a compound option is an-
other option. At node Q, similarly, we see that the value of the option is $0,
which is obtained through MAX[—3$500; 0]. Using backward induction, the
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Binomial Approach — Step lil:
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Max [$1059.6; 0]

0.0
145.33 The value of this Compound

Option is $145.33 as compared
to a static NPV of $100, yielding

0.0 an option value of $45.33

0.0

Maximum Executing or Keeping the Option Open
Executing = 0 — Investment Cost 2 = -$500.0

Keeping Option Open = [P(0)+(1-P)(0)] exp(—rf*dt) = $0 Max [$0.0; -500]

0.0

FIGURE 7.11  Simultaneous Compound Option (Valuation Lattice)

value of the compound option is calculated as $145.33 million (rounded).
Notice how this compares to a static decision value of $1,000 — $900 = $100
million for the first investment. We obtain $165.10 by applying 1,000 steps
in the software, $165.10 using a closed-form compound option model, and
$165.11 using a modified American call option model, thereby verifying the
results and approach. Notice that node P is the same as MAX [$2459.6 —
$1400; 0]. That is, a simultaneous compound option (regardless of how
many different implementations) yields the same value as a simple call option
where the implementation cost is the sum of all the different phases’ costs.

CHANGING STRIKES

A modification to the option types we have thus far been discussing is the idea
of changing strikes—that is, implementation costs for projects may change
over time. Putting off a project for a particular period may mean a higher cost.
Figures 7.12 and 7.13 show the applications of this concept. Keep in mind
that changing strikes can be applied to any previous option types as well; in
other words, one can mix and match different option types. Suppose the im-
plementation of a project in the first year costs $80 million but increases to
$90 million in the second year due to expected increases in raw materials
and input costs. Using Monte Carlo simulation, the implied volatility of the
logarithmic returns on the projected future cash flows is calculated to be 50
percent. The risk-free rate on a riskless asset for the next two years is found
to be yielding 7.0 percent. The static valuation of future profitability using a
discounted cash flow model (that is, the present value of the expected future
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Binomial Approach — Step I:
Lattice Evolution of the Underlying

271.8
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164.9
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Cost at year 1=$80; cost at year 2 =$90 100.0
S
Given: S =100, 0 =0.50, T=2, rf=0.07 ° ‘Sooug
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FIGURE 7.12 Changing Strike Option (Underlying Asset Lattice)

cash flows discounted at an appropriate market risk-adjusted discount rate)
is found to be $100 million. The underlying asset lattice evolution can be seen
in Figure 7.12.

Similar to the approach used for calculating an American-type call option,
Figure 7.13 shows the stepwise calculations on an option with changing strike
prices. Notice that the value of the call option on changing strikes is $37.53
million. Compare this to a naive static discounted cash flow net present value
of $20 million for the first year and $10 million for the second year.

Binomial Approach — Step II:

Option Valuation Lattice

R
181.83 Maximum between Executing the purchase option or 0
EXECUTE Executing = 271.83 — Exercise Price 2 = $181.83
84.87 .
EXECUTE Max [$181.8; 0]
37.53
OPEN 10.00 The binomial option valuation comes out
EXECUTE to be $37.53. Compare this to a naive
Black-Scholes result of $36.90 or a static
NPV of $20 for a 1-year exercise and
$10 for a 2-year exercise.
Max [$4.17; -19.35; 0] 0.00
CONTINUE

Maximum between Executing the purchase option or Keeping the Option Open
Executing = 60.65 — Exercise Price 1 =-$19.35
Keeping the Option Open = [P(10) + (1-P)(0)lexp(-riskfree*dt) = $4.17

FIGURE 7.13 Changing Strike Option (Valuation Lattice)
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Obviously for simplicity in illustration, only two periods are used. In
actual business conditions, multiple strike costs can be accounted for over
many time periods and modeled on binomial lattices with more steps. Based
on the time-step size (8t), the different costs associated with different time
periods can be mapped into the lattice easily. In addition, changing cost
options can also be used in conjunction with all other types of real options
models, such as the expansion option, compound option, volatility option,
and so forth. See Chapters 9 and 10 for details on applying different imple-
mentation costs (as well as other parameters changing over time) using the
Super Lattice Solver software. Note that it is extremely difficult mathemat-
ically to allow multiple changing parameters in a closed-form model.

CHANGING VOLATILITY

Instead of changing strike costs over time, in certain cases, volatility on cash
flow returns may differ over time. This can be seen in Figures 7.14 and 7.15.
In Figure 7.14, we see the example for a two-year option where volatility
is 20 percent in the first year and 30 percent in the second year. In this cir-
cumstance, the up and down factors are different over the two time periods.
Thus, the binomial lattice will no longer be recombining. As a matter of
fact, the underlying asset lattice branches cross over each other as shown in
Figure 7.14. The upper bifurcation of the first lower branch (from $81.87

Binomial Approach — Step I:
Lattice Evolution of the Underlying

164.87
Sousuz
12214
100.0 Sour 110.52
So- Sodiuz
81.87 90.48
Sody Sounda
60.65
Given: S = 100, X = 110, T=2, rf=0.10, o, = 20% and o, = 30% Sodlidy

u =¥ =12214andd, =" =0.8187

u, = =1.3499 and d, = ¢ =0.7408

of (81) _ of (8) _
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FIGURE 7.14 Changing Volatility Option (Underlying Asset Lattice)
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to $110.52) crosses the lower bifurcation of the upper first branch (from
$122.14 to $90.48). This complex crossover will be compounded for multi-
ple time-steps.

Figure 7.15 shows the option valuation lattice. Similar calculations are
performed for an option with changing volatilities as for other option types.
For instance, node T has a value of $54.87, which is the maximum of zero
and $164.87 — $110 = $54.87. For node U, the value of $0.28 million comes
from the maximization of executing the option $81.87 — $110 = —§$28.13
million and keeping the option open with [(P)($0.52) + (1 — P)($0)]exp
[(—rf)(8t)] = $0.28 million, which is the maximum value. This calculation
assumes a 10 percent risk-free rate rf, a time-step 6t of 1, and a risk-neutral
probability P of 0.5983. Using this backward induction technique, this val-
uation lattice is back-calculated to the starting point to obtain the value of
$19.19 million, as compared to the static net present value of —$10 million
(benefits of $100 million with a cost of $110 million).

More complicated analyses can be obtained through this changing volatil-
ity condition. For example, where there are multiple stochastic underlying
variables driving the value of the option, each variable may have its own
unique volatility, but the variables are correlated with each other. Examples
include the price and quantity sold where there is a negative correlation be-
tween these two variables (the downward-sloping demand curve). The Real
Options Valuation’s Super Lattice Solver software CD-ROM handles some
of these more difficult calculations. Note that due to the nonrecombining lat-
tice requirement when volatility changes over time, software applications are

Binomial Approach —Step II:

Option Valuation Lattice

Maximum between Executing the purchase option or 0
Executing = 164.87  Exercise Price = $54.87

54.87
EXERCISE

The binomial option valuation comes
out to be $19.19 in expanded NPV, in
comparison with a static NPV of -$10,
providing a $29.19 option value. Notice
that this analysis type assumes a
nonrecombining lattice analysis.

19.19
OPEN

0.00
END

Maximum between Executing the purchase option or Keeping the Option Open
Executing = 81.87  Exercise Price = -$28.13
Keeping the Option Open = [P(0.52) + (1 - P)(0.00)]exp(-riskfree*dt) = $0.28

FIGURE 7.1 Changing Volatility Option (Valuation Lattice)
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required as the computations become intractable quickly when attempted
manually.

SEQUENTIAL COMPOUND OPTION

A sequential compound option exists when a project has multiple phases and
latter phases depend on the success of previous phases. Figures 7.16 to 7.19
show the calculation of a sequential compound option. Suppose a project has
two phases, where the first phase has a one-year expiration that costs $500
million. The second phase’s expiration is three years and costs $700 million.
Using Monte Carlo simulation, the implied volatility of the logarithmic re-
turns on the projected expected present value of the returns of future cash
flows is calculated to be 20 percent. The risk-free rate on a riskless asset for
the next three years is found to be yielding 7.7 percent. The static valuation
of future profitability using a discounted cash flow model (that is, the pres-
ent value of the future cash flows discounted at an appropriate market risk-
adjusted discount rate) is found to be $1,000 million. The underlying asset
lattice is seen in Figure 7.16.

The calculation of this initial underlying asset lattice is similar to previous
option types by first calculating the up and down factors and evolving the
present value of the future cash flow for the next three years.

Figure 7.17 shows the second step in calculating the equity lattice of the
second option. The analysis requires the calculation of the longer-term op-
tion first and then the shorter-term option because the value of a compound

Binomial Approach — Step I:

Lattice Evolution of the Underlying 18221
Soul
1491.8
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1221.4
Sou 1221.4
1000.0 Sou2d
So 1000.0
Soud
818.7
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Given: S = 1,000, o= 0.20, X, = 500, X, = 700 So02
T,=1,T,=3,rf =0.077
! 2 j 5 548.8
u=e""% =12214andd =" =0.8187 Sod®
of () _
== s
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FIGURE 7.16  Sequential Compound Option (Underlying Asset Lattice)
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Binomial Approach — Step II:

Maximum between Executing or 0
Equity Lattice Execute = 1822.1 — Investment Cost 2 = $1122.1

449.5
This is the intermediate Equity
Valuation Lattice required to
solve the Compound Option

Max [$71.3; -29.7] 0.0

Maximum Executing or Keeping the Option Open
Executing = 670.3 — Investment Cost 2 = -$29.7
Keeping Option Open = [P(118.7)+(1-P)(0.0)] exp(-rf*dt) = $71.33

FIGURE 7.17  Sequential Compound Option (Equity Lattice)

option is based on another option. At node V, the value is $1,122.1 million
because it is the maximum between zero and executing the option through
$1,822.1 — $700 = $1,122.1 million. The intermediate node W is $71.3 mil-
lion, the maximum between executing the option $670.3 — $700 = —$29.7
million and keeping the option open with [(P)($118.7) + (1 — P)($0.0)]
exp[(—rf)(6t)] = $71.3 million, which is the maximum value. This calculation
assumes a 7.7 percent risk-free rate rf, a time-step 8¢ of 1, and a risk-neutral
probability P of 0.6488. Using this backward induction technique, this first
equity lattice is back-calculated to the starting point to obtain the value of
$449.5 million.

Figure 7.18 shows the valuation of the first, shorter-term option. The
analysis on this lattice depends on the lattice of the second, longer-term option
as shown in Figure 7.17. For instance, node X has a value of $121.3 million,
which is the maximum between zero and executing the option $621.27 —
$500 = $121.27 million. Notice that $621.27 is the value of the second, longer-
term equity lattice as shown in Figure 7.17 and $500 is the implementation cost
on the first option.

Node Y on the other hand uses a backward induction calculation, where
the value $72.86 million is obtained through the maximization between
executing the option $449.5 — $500 = —$50.5 million and keeping the option
open with [(P)($121.3) + (1 — P)($0.0)]exp[(—rf )(8t)] = $72.86 million, which
is the maximum value. The maximum value comes from keeping the op-
tion open. This calculation assumes a 7.7 percent risk-free rate rf, a time-step
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Binomial Approach — Step lll:

Option Valuation Lattice

Maximum between Executing or 0

Execute = 621.27 — Investment Cost 1 = $121.3

X

This value of this Compound
Max [$121.3; 0.0] Option is $72.86

Max [$72.86; 0.0]
0.0

Maximum Executing or Keeping the Option Open
Executing = 449.5 — Investment Cost 1 = -$50.5
Keeping Option Open = [P(121.3)+(1-P)(0)] exp(-rf*dt) = $72.86.

FIGURE 7.18  Sequential Compound Option (Valuation Lattice)

8t of 1, and a risk-neutral probability P of 0.6488. Again notice that $500

million is the implementation cost of the first option.

Figure 7.19 shows the combined option analysis from Figures 7.17 and
7.18, complete with decision points on when to invest in the first and second

rounds versus keeping the option to invest open for the future.

Binomial Approach — Step IV:

Combined Option Valuation Lattice

SECOND OPTION
FIRST OPTION
1122.1
INVEST 2No
43.7
ek ROUND
OPEN
121.3
INVEST 1st
72.86 ROUND SilL
OPEN INVEST 2ND
351.9 ROUND
OPEN
0.00
DON'T 118.7
INVEST INVEST 2ND
71.3 ROUND
OPEN
0.0
DON'T
INVEST

FIGURE 7.19  Sequential Compound Option (Combined Lattice)
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See Chapters 9 to 11 for illustrations and examples of how to combine
sequential-type options with other more complex options in solving real-life
problems using the Multiple Asset Super Lattice Solver software.

EXTENSION TO THE BINOMIAL MODELS

As discussed in the previous examples, multiple tweaks can be performed
using the binomial lattices. For instance, Figure 7.20 illustrates a simple
chooser option with the same parameters as in Figure 7.7 but with a twist.
For instance, the expansion factor increases at a 10 percent rate per year,
while the cost of expanding decreases at a 3 percent deflation per year. Sim-
ilarly, the savings projected from contracting will reduce at a 10 percent rate.
However, the salvage value of abandoning increases at a 5 percent rate.
Custom changes like these can be easily accommodated in a binomial lattice
but are very difficult, if not impossible, to solve in closed-form solutions, be-
cause every time a slight modification is made to a closed-form model, sto-
chastic calculus is a necessary evil in solving the problem, as compared to a
simple change in the maximization routines inherent in the binomial lattices.

Taking this approach a little further, the reader can very easily create a
custom option to accommodate almost any situation, to more closely reflect
actual business cases. For instance, the growth rates can be inflation rates or
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FIGURE 7.20 Extension to the Binomial Models
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changes in the cost of execution, savings, or salvage values over time. In ad-
dition, the expansion factor or contraction factor can also be changed. This
is more appropriate as it is less credible to say that executing the same proj-
ect at any time within a specified period will cost exactly the same no matter
what the circumstances are. With these simple building blocks discussed in
this chapter, readers are well on their way to developing more sophisticated
and customized real options models. Chapter 8 briefly discusses some addi-
tional real options models and problems, while Chapters 9 to 11 illustrate
how these more advanced problems can be easily tackled using the Super
Lattice Solver trial software included in the CD-ROM.

SUMMARY

Closed-form solutions are exact, quick, and easy to implement with the as-
sistance of some programming skills but are highly difficult to explain. They
are also very specific in nature, with limited modeling flexibility. Binomial
lattices, in contrast, are easy to implement and easy to explain. They are also
highly flexible but require significant computing power and time-steps to ob-
tain good approximations. In the limit, binomial lattices tend to approach
closed-form solutions; hence, it is always recommended that both approaches
be used to verify the results, whenever appropriate. The results from closed-
form solutions may be used as benchmarks in conjunction with the binomial
lattice structure when presenting to management a complete real options
solution. Even a Black-Scholes model can be used as a means of credibility test-
ing. That is, if the real options results have similar magnitude as the Black-
Scholes, the analysis becomes more credible.

CHAPTER 7 QUESTIONS

1. Using the example in Figures 7.1 and 7.2 on the abandonment option,
recalculate the value of the option assuming that the salvage value in-
creases from the initial $100 (at time 0) by 10 percent at every period
starting from time 1.

2. The expansion option example in Figures 7.3 and 7.4 assumes that the
competitor has the same level of growth and uncertainty as the firm being
valued. Describe what has to be done differently if the competitor is as-
sumed to be growing at a different rate and facing a different set of risks
and uncertainties. Rerun the analysis assuming that the competitor’s
volatility is 45 percent instead of 35 percent.

3. Figures 7.7 and 7.8 illustrate the chooser option, that is, the option to
choose among expanding, contracting, and abandoning current opera-
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tions. Rerun these three options separately using the Super Lattice Solver
software in the enclosed CD-ROM and verify that the summary pro-
vided in Figure 7.8 is correct. Why is it that the sum of the individual op-
tion values does not equal the chooser option value?

4. In the compound option example illustrated in Figures 7.9 through 7.11,
the first phase cost is $900 and the second phase cost is $500. However,
in a simultaneous compound option, these two phases occur concur-
rently. Rerun the example by changing the first phase cost to $500 and
the second phase cost to $900. Should the results be comparable? Why
or why not?

5. Based on the example in Appendix 7G, create a European call option
model using Monte Carlo simulation in Excel. For a simulated standard-
normal random distribution, use the function “=NORMSINV(RAND( ))”.
Assume a one-year expiration, 40 percent annualized volatility, $100
asset and strike costs, 5 percent risk-free rate, and no dividend pay-
ments. Verify your results using Black-Scholes and a binomial lattice.

6. Solve an American call option using the risk-neutral probability approach,
and then solve the same option using the market-replicating portfolio
approach based on the example in Appendix 7C. For the market-
replicating portfolio approach, assume continuous discounting at the
risk-free rate. Verify that theory holds such that both approaches obtain
identical call option values. Which approach is simpler to apply? For
both approaches, assume the following parameters: asset value = $100,
strike cost = $100, maturity = 3 years, volatility = 10 percent, risk-free
rate = § percent, dividends = 0 percent, and binomial lattice steps = 3.
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Volatility Estimates

There are several ways to estimate the volatility used in the option models.
The most common and valid approaches are:

m Logarithmic Cash Flow Returns Approach or Logarithmic Stock Price

190

Returns Approach: This method is used mainly for computing the volatil-
ity on liquid and tradable assets such as stocks in financial options; how-
ever, it is sometimes used for other traded assets such as price of oil and
price of electricity. The drawback is that DCF models with only a few
cash flows will generally overstate the volatility and this method cannot
be used when negative cash flows occur. The benefits include its compu-
tational ease, transparency, and modeling flexibility of the method. In ad-
dition, no simulation is required to obtain a volatility estimate.
Logarithmic Present Value Returns Approach: This approach is used
mainly when computing the volatility on assets with cash flows. A typical
application is in real options. The drawback of this method is that sim-
ulation is required to obtain a single volatility and is not applicable for
highly traded liquid assets such as stock prices. The benefit includes the
ability to accommodate certain negative cash flows and applies more rig-
orous analysis than the logarithmic cash flow returns approach, providing
a more accurate and conservative estimate of volatility when assets are
analyzed.

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
Models: These models are used mainly for computing the volatility on lig-
uid and tradable assets such as stocks in financial options and are some-
times used for other traded assets such as price of oil and price of
electricity. The drawback is that a lot of data is required, advanced econo-
metric modeling expertise is required, and this approach is highly suscep-
tible to user manipulation. The benefit is that rigorous statistical analysis
is performed to find the best-fitting volatility curve, providing different
volatility estimates over time.
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B Management Assumptions and Guesses: This approach is used for both
financial options and real options. The drawback is that the volatility
estimates are very unreliable and are only subjective best guesses. The
benefit of this approach is its simplicity—this method is very easy to ex-
plain to management the concept of volatility, both in execution and
interpretation.

® Market Proxy Using Comparables or Indices: This approach is used
mainly for comparing liquid and nonliquid assets, as long as comparable
market-, sector-, or industry-specific data are available. The drawback is
that it is sometimes hard to find the right comparable firms and the re-
sults may be subject to gross manipulation by subjectively including or
excluding certain firms. The benefit is its ease of use.

LOGARITHMIC CASH FLOW RETURNS
OR LOGARITHIMIC STOCK PRICE
RETURNS APPROACH

The Logarithmic Cash Flow Returns or Logarithmic Stock Price Returns Ap-
proach calculates the volatility using the individual future cash flow estimates,
comparable cash flow estimates, or historical prices, generating their corre-
sponding logarithmic relative returns, as illustrated in Table 7A.1. Starting
with a series of forecast future cash flows or historical prices, convert them into
relative returns. Then take the natural logarithms of these relative returns. The
standard deviation of these natural logarithm returns is the periodic volatility
of the cash flow series. The resulting periodic volatility from the sample
dataset in Table 7A.1 is 25.58%. This value then must be annualized.

No matter what the approach used, the periodic volatility estimate used
in a real options or financial options analysis has to be an annualized volatil-
ity. Depending on the periodicity of the raw cash flow or stock price data used,

TABLE 7A.1 Natural Logarithmic Cash Flow Returns Approach

Time Cash Flow Relative Natural Logarithm of

Period Cash Flows Returns Cash Flow Returns (X)
0 $100 —
1 $125 $125/$100 = 1.25 ln($125/$100) = 0.2231
2 $ 95 $ 95/$125 =0.76 n ($95/$125) = -0.2744
3 $105 $ 105/$95 = 1.11 n ($105/$95) = 0.1001
4 $155 $155/$105 = 1.48 1n($155/$105) = 0.3895
S $146 $146/$155 = 0.94 In($146/$155) = -0.0598
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the volatility calculated should be converted into annualized values using
o\P, where P is the number of periods in a year and & is the periodic volatil-
ity. For instance, if the calculated volatility using monthly cash flow data is
10%, the annualized volatility is 10%V12 = 35%. Similarly, P is 365 (or
about 250 if accounting for trading days and not calendar days) for daily
data, 4 for quarterly data, 2 for semiannual data, and 1 for annual data.

Notice that the number of returns in Table 7A.1 is one less than the total
number of periods. That is, for time periods 0 to 5, we have six cash flows but
only five cash flow relative returns. This approach is valid and correct when
estimating the volatilities of liquid and highly traded assets—historical stock
prices, historical prices of oil and electricity—and is less valid for computing
volatilities in a real options world, where the underlying asset generates cash
flows. This is because to obtain valid results, many data points are required,
and in modeling real options, the cash flows generated using a DCF model
may only be for 5 to 10 periods. In contrast, a large number of historical
stock prices or oil prices can be downloaded and analyzed. With smaller data
sets, this approach typically overestimates the volatility.

The volatility estimate is then calculated as

i(xi —3?)2 =25.58%
i=1

Volatility =

n-—1

where 7 is the number of Xs, and x is the average X value.

To further illustrate the use of this approach, Figure 7A.1 shows the stock
prices for Microsoft downloaded from Yahoo! Finance, a publicly available
free resource.* You can follow along the example by loading the example
file: Start | Programs | Real Options Valuation | Real Options Super Lattice
Solver | Sample Files | Volatility Estimates and select the worksheet tab Log
Cash Flow Approach. The data in columns A to G in Figure 7A.1 are down-
loaded from Yahoo! The formula in cell 13 is simply LN(G3/G4) to compute
the natural logarithmic value of the relative returns week over week, and is
copied down the entire column. The formula in cell J3 is STDEV/(I3:154)*
SORT(52) which computes the annualized (by multiplying the square root
of the number of weeks in a year) volatility (by taking the standard deviation
of the entire 52 weeks of the year 2004 data). The formula in cell J3 is then
copied down the entire column to compute a moving window of annualized
volatilities. The volatility used in this example is the average of a 52-week

*Go to http://finance.yahoo.com and enter a stock symbol (e.g., MSFT). Click on
Quotes: Historical Prices and select Weekly and select the period of interest. You can
then download the data to a spreadsheet for analysis.
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FIGURE 7A.1  Computing Microsoft’s One-Year Annualized Volatility

moving window, which covers two years of data. That is, cell L8’s formula is
AVERAGE(]3:]54), where cell J54 has the following formula: STDEV
(154:1105)*SQRT(52), and of course row 105 is January 2003. This means
that the 52-week moving window captures the average volatility over a two-
year period and smoothes the volatility such that infrequent but extreme
spikes will not dominate the volatility computation. Of course, a median
volatility should also be computed. If the median is far off from the average,
the distribution of volatilities is skewed and the median should be used, oth-
erwise, the average should be used. Finally, these 52 volatilities can be fed
into Monte Carlo simulation—using the enclosed Risk Simulator software’s
custom nonparametric simulation (see Chapter 9 for details).

Clearly there are advantages and shortcomings to this simple approach.
This method is very easy to implement, and Monte Carlo simulation is not
required to obtain a single-point volatility estimate. This approach is math-
ematically valid and is widely used in estimating volatility of financial assets.
However, for real options analysis, there are several caveats that deserve closer
attention. When cash flows are negative over certain time periods, the relative
returns will have negative values, and the natural logarithm of a negative value
does not exist. Hence, the volatility measure does not fully capture the pos-
sible cash flow downside and may produce erroneous results. In addition,
autocorrelated cash flows (estimated using time-series forecasting techniques)
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or cash flows following a static growth rate will yield erroneous volatility es-
timates. Great care should be taken in such instances. This flaw is neutral-
ized in larger datasets that only carry positive values such as historical stock
prices or price of oil or electricity.

This approach is valid and correct as computed in Figure 7A.1 for lig-
uid and traded assets with a lot of historical data. The reason why this ap-
proach is not valid for computing the volatility of cash flows in a DCF for the
purposes of real options analysis is the lack of data. For instance, the annu-
alized cash flows 100, 200, 300, 400, 500 would yield a volatility of 20.80
percent, as compared to the annualized cash flows 100, 200, 400, 800, 1600,
which would yield a volatility of 0 percent, versus the cash flows 100, 200,
100, 200, 100, 200, which yield 75.93 percent. All these cash flow streams
seem fairly deterministic and yet provide very different volatilities. In addi-
tion, the third set of negatively autocorrelated cash flows should actually be
less volatile (due to its predictive cyclical nature and reversion back to a base
level) but its volatility is computed to be the highest. The second cash flow
seems more risky than the first set due to larger fluctuations but has a volatil-
ity of 0 percent. Therefore, be careful when applying this method to small
datasets.

When applied to stock prices and historical data that are nonnegative, this
approach is easy and valid. However, if used on real options assets, the DCF
cash flows may very well take on negative values, returning an error in your
computation (i.e., log of a negative value does not exist). However, you can
take certain approaches to avoid this error. The first is to move up your DCF
model, from free cash flows to net income, to operating income (EBITDA),
and even all the way up to revenues and prices, where all the values are pos-
itive. If doing it this way, then care must be taken such that all other options
and projects are modeled this way for comparability’s sake. Also, this ap-
proach is justified in situations where the volatility, risk, and uncertainty stem
from a certain variable above the line is used. For instance, the only critical
success factor for an oil and gas company is the price of oil (price) and the
production rate (quantity), where both are multiplied to obtain revenues. In
addition, if all other items in the DCF are proportional ratios (e.g., operating
expenses are 25 percent of revenues or EBITDA values are 10 percent of rev-
enues, and so forth), then we are only interested in the volatility of revenues.
In fact, if the proportions remain constant, the volatilities computed are iden-
tical (e.g., revenues of $100, $200, $300, $400, $500 versus a 10 percent
proportional EBITDA of $10, $20, $30, $40, $50, yields identical 20.80 per-
cent volatilities). Finally, taking the oil and gas example a step further, com-
puting the volatility of revenues, assuming no other market risks exist below
this revenue line in the DCF, is justified because this firm may have global op-
erations with different tax conditions and financial leverages (different ways
of funding projects). The volatility should only apply to market risks and not
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private risks (how good a negotiator the CFO is on getting foreign loans, or
how shrewd your CPAs are in creating offshore tax shelters).

Now that you understand the mechanics of computing volatilities this
way, we need to explain why we did what we did! Merely understanding the
mechanics is insufficient in justifying the approach or explaining the ration-
ale why we analyzed it the way we did. Hence, let us look at the steps under-
taken and explain the rationale behind them.

Step 1: Collect the relevant data and determine the periodicity and time
frame. You can use forecast financial data (cash flows from a DCF model),
comparable data (comparable market data such as sector indexes and indus-
try averages), or historical data (stock prices or price of oil and electricity).
Consider the periodicity and time frame of the data. In using forecast and com-
parable data, your choices are limited to what is available or what models have
been built, and are typically annual, quarterly, or monthly data, usually for a
limited amount of time. When using historical data, your choices are more var-
ied. Typically, daily data has too much random fluctuation and white noise
that may erroneously impact the volatility computations. Monthly, quarterly,
and annual historical data are spread too far out and all the fluctuations in-
herent in the time-series data may be smoothed out. The optimal periodicity is
weekly data, if available. Any intraday and intraweek fluctuations are
smoothed out but weekly fluctuations are still inherent in the dataset. Finally,
the time frame of the historical data is also important. Periods of extreme
events (e.g., dot-com bubble, global recession, depression, terrorist attacks)
need to be carefully considered; that is, are these actual events that will recur
and hence are not outliers but part of the undiversifiable systematic risk of
doing business? In Figure 7A.1’s example, a two-year cycle was used. Clearly,
if the option has a three-year maturity, then a three-year cycle should be con-
sidered, with the exception that data is not available, or if certain extreme
events mitigate our using the data back that far.

Step 2: Compute relative returns. Relative returns are used in geometric
averages while absolute returns are used in arithmetic averages. To illustrate,
suppose you purchase an asset or stock for $100. You hold it for one period
and it doubles to $200, which means you made 100 percent absolute re-
turns. You get greedy and keep it for one more period when you should have
sold it and obtained the capital gains. The next period, the asset goes back
down to $100, which means you lost half the value or —50 percent absolute
returns. Your stockbroker calls you up and tells you that you made an aver-
age of 25 percent returns in the two periods (the arithmetic average of 100 per-
cent and —50 percent is 25 percent)! You started with $100 and ended up
with $100. You clearly did not make a 25 percent return. Thus, an arithmetic
average will overinflate the average when fluctuations occur. Fluctuations
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do occur in the stock market or for your real options project, otherwise your
volatility is very low and there’s no option value, and hence, no point in doing
an options analysis. A geometric average is a better way to compute the re-
turn. The computation is seen below, and you can clearly see that as part of
the geometric average calculation, relative returns are computed. That is, if
$100 goes to $200, the relative return is 2.0 and the absolute return is 100
percent; or when $100 goes down to $90, the relative return is 0.9 (anything
less than 1.0 is a loss) or —10 percent absolute returns. Thus, to avoid over-
inflating the computations, we use relative returns in Step 2.

PERIODS |
“( Period 1 End Value I Period 2 End Value J [ Period n End Value J
| .

\

Period 1 Start Value )\ Period 2 Start Value

2
(200 ) 100

= |=—|=10
V 100 ) 200

Hence, the calculated geometric average of 1.0 implies a 0 percent average
return (simply take the geometric average minus 1.0), which more accurately
represents the situation.

Geometric Average = -
Period n Start Value

Step 3: Compute natural logarithm of the relative returns. The natural
log is used for two reasons. The first is to be comparable to the exponential
Brownian Motion stochastic process; that is, recall that a Brownian Motion
is written as:

§ :e,u(&)+0's ot
S

To compute the volatility () used in an equivalent computation (regardless
of whether it is used in simulation, lattices, or closed-form models because
these three approaches require the Brownian Motion as a fundamental as-
sumption), a natural log is used. The exponential of a natural log cancels each
other out in the previous equation. The second reason is that in computing
the geometric average, relative returns were used, then multiplied and taken
to the root of the number of periods. By taking a natural log of a root (1), we
reduce the root (7) in the geometric average equation. This is why natural
logs are used in Step 3.

Step 4: Compute the sample standard deviation to obtain the periodic
volatility. A sample standard deviation is used instead of a population stan-
dard deviation because your dataset might be small. For larger datasets, the
sample standard deviation converges to the population standard deviation,
so it is always safer to use the sample standard deviation. Of course, the fol-
lowing sample standard deviation is simply the average (sum of all and then
divided by some variation of #) of the deviations of each point of a dataset
from its mean (x — x), adjusted for a degree of freedom for small datasets,
where a higher standard deviation implies a wider distributional width and,
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thus, carries a higher risk. The variation of each point around the mean is
squared to capture its absolute distances (otherwise for a symmetrical dis-
tribution, the variations to the left of the mean might equal the variations to
the right of the mean, creating a zero sum), and the entire result is taken to
the square root, to bring the value back to its original unit. Finally, the de-
nominator (7 — 1) adjusts for a degree of freedom in small sample sizes. To
illustrate, suppose there are three people in a room and we ask all three of
them to randomly choose a number of their choice, as long as the average is
$100. The first person might choose any value, and so could the second per-
son. However, when it comes to the third person, he or she can only choose
a single unique value such that the average is exactly $100. Thus, in a room
of 3 people (1), only 2 people (1 — 1) are truly free to choose. So, for smaller
sample sizes, taking the #z — 1 correction makes the computations more con-
servative. This is why we use sample standard deviations in Step 4.

n

Volatility = % 2 (x,» - a_c)2

T izl

Step 5: Compute the annualized volatility. The volatility used in options
analysis is annualized for several reasons. The first reason is that all other in-
puts are annualized inputs (e.g., annualized risk-free rate, annualized divi-
dends, and maturity in years). The second reason is that a cash flow or stock
price stream of $10 to $20 to $30 that occurs in three different months ver-
sus three different days has very different volatilities. Clearly, if it takes days
to double or triple your asset value, that asset is a lot more volatile than if it
takes months. All these have to be common-sized in time, that is, annualized.
Finally, the Brownian Motion stochastic equation has the values o\6t; that
is, suppose we have a one-year option modeled using a 12-step lattice, then
Ot is 1/12. If we use monthly data, compute the monthly volatility, and use
this figure as the input, then this monthly volatility will again be partitioned
into 12 pieces per o\dz. Therefore, we need to first annualize the volatility
to an annual volatility (multiplied by the square root of 12), input this an-
nual volatility into the model, and let the model partition the volatility (mul-
tiplied by the square root of %2) into its periodic volatility. This is why we
annualize volatilities in Step 5.

LOGARITHMIC PRESENT VALUE
RETURNS APPROACH

The Logarithmic Present Value Returns Approach to estimating volatility
collapses all future cash flow estimates into two present value sums, one
for the first time period and another for the present time (Table 7A.2). The
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TABLE 7A.2 Natural Logarithmic Present Value Returns

Present Value at

Present Value at

Time Period Cash Flows Time 0 Time 1
0 $100 _$100 _ $100.00 T
(1+01)
1 $125 (825 o360 3125 615500
(1+0.1) (1+0.1)
2 $ 95 895 47851 995 _ 4636
(1+0.1) (1+0.1)
3 $105 8105 _ 47689 105 ¢e678
(1+0.1) (1+01)
4 $155 8155 _gi0587 35 411645
(1+0.1) (1+01)
5 $146 8146 _ 69065 83146 _ 49972
(1+01) (1+01)
SUM $567.56 $514.31

calculations assume a constant discount rate. The cash flows are discounted
all the way to Time 0 and again to Time 1, with the cash flows in Time 0 ig-
nored (sunk cost). Then the values are summed, and the following logarith-
mic ratio is calculated:

n
Y PVCE,
X=In| = —

iPVCF,»
i=0

where PVCE, is the present value of future cash flows at different time peri-
ods i.

This approach is more appropriate for use in real options where actual
assets and projects’ cash flows are computed and their corresponding volatil-
ity is estimated. This approach is applicable for project and asset cash flows,
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and can accommodate less data points; however, it requires the use of Monte
Carlo simulation to obtain a volatility estimate. This approach reduces the
measurement risks of autocorrelated cash flows and negative cash flows.
However, the bottom line is still that this approach is the best for estimating
volatilities in most real options problems.

In the foregoing example, X is simply [n($514.31/$567.56) = — 0.09835.
Using this intermediate X value, perform a Monte Carlo simulation on the
discounted cash flow model (thereby simulating the individual cash flows)
and obtain the resulting forecast distribution of X. As seen previously, the
sample standard deviation of the forecast distribution of X is the volatility
estimate used in the real options analysis. It is important to note that only
the numerator is simulated while the denominator remains unchanged.

The downside to estimating volatility this way is that the approach re-
quires Monte Carlo simulation, but the calculated volatility measure is a
single-digit estimate, as compared to the Logarithmic Cash Flow Returns or
Stock Price Returns Approach, which yields a distribution of volatilities, that
in turn yields a distribution of calculated real options values.

The main objection to using this method is its dependence on the vari-
ability of the discount rate used. For instance, we can expand the X equation
as follows:

n

Y PVCE ¢k , CH CH _ , Ch
X =l i1 1 1+D)” (1+D)' (1+D) (1+D)N!

iPVCF Ch, , CH _ Ch _  Ck

e (1+D)" (@1+D)! (1+D)? (1+D)N

where D represents the constant discount rate used. Here we see that the
cash flow series CF for the numerator is offset by one period, and the discount
factors are also offset by one period. Therefore, by performing a Monte
Carlo simulation on the cash flows alone versus performing a Monte Carlo
simulation on both cash flow variables as well as the discount rate will yield
very different X values. The main critique of this approach is that in a real
options analysis, the variability in the present value of cash flows is the key
driver of option value and not the variability of discount rates used in the
analysis. Modifications to this method include duplicating the cash flows and
simulating only the numerator cash flows, thereby providing different numer-
ator values but a static denominator value for each simulated trial, while
keeping the discount rate constant. In fact, when running this approach, it
might be advisable to set the discount rate as a static risk-free rate, simulate
the DCF inputs, and obtain the volatility as an output, then reset the discount
rate back to its original value.
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Figure 7A.2 illustrates an example of how this approach can be imple-
mented easily in Excel. To follow along, open the example file: Volatility
Computations and select the worksheet tab Log Present Value Approach.
The example shows a sample DCF model where the cash flows (row 46) and
implementation costs (row 48) are computed separately. This is done for sev-
eral reasons. The first is to separate the market risks (revenues and associ-
ated operating expenses) from the private risks (cost of implementation)—of
course only if it makes sense to separate them, as there might be situations
where the implementation cost is subject to market risk as well. Here we as-
sume that implementation cost is subject to only private risks and will be dis-
counted at a risk-free or the cost of money that is close to risk-free rate of
return, to discount it for time value of money. The market-risk cash flows
are discounted at a market risk-adjusted rate of return (which can also be seen
as discounting at 5 percent risk-free rate to account for time value of money,
and discounted again at the market risk premium of 10 percent for risk, or
simply discounted one time at 15 percent). As discussed in Chapter 2, if you
do not separate the market and private risks, you end up discounting the pri-
vate risks heavily and making the DCF a lot more profitable than it actually
is (i.e., if the costs that should be discounted at 5 percent are discounted at
15 percent, the NPV will be inflated). By separately discounting these cash

Al C [ D | = [ F [ G [ H I
2 | Log Present Value Approach
% Input Results
' 9 | |Discount Rate (Cash Flow) 15.00% Present Value (Cash Flow) 328.24
| 10| |Discount Rate (Impl. Cost) 5.00% Present Value (Impl. Cost) 189.58
| 11| |TaxRate 10.00% Met Present Value 138.67
12
7 | 2002 2003 2004 2005 2006
1 18| Revenue [ s100.00 | $20000 [ $300.00 | $400.00 [ $500.00 |
(22|  Cost of Revenue [ s4000 | ssoo0 | s12000 | §160.00 | $200.00 |
26 Gross Profit 60.00 $120.00 $180.00 $240.00 300.00
| 27|  Operating Expenses 2200 $44.00 566.00 $68.00 110.00
| 31|  Depreciation Expense $5.00 $5.00 $5.00 $6.00 $5.00
1 35|  Interest Expense $3.00 $3.00 $3.00 $3.00 $3.00
139|  Income Before Taxes $30.00 568.00 $106.00 $144.00 $182.00
40 Taxes $3.00 56.80 $10.60 $514.40 $16.20
| 41| Income After Taxes $27.00 $61.20 $95.40 $129.60 $163.80
(42|  Non-Cash Exp [ 51200 [ s$1200 [ §1200 | 1200 | §1200 |
46 Cash Flow $39.00 $73.20 $107.40 $141.60 $175.80
47
(48]  Implementation Cost [ 52500 | 52500 | 55000 | 5000 [ 57500 |
49 |
| 50| Volatility Estimates (Logarithmic PV Approach)
51 PV (0) $39.00 $63.65 $81.21 $93.10 $100.51
| 52 | PV (1) A §73.20 §93.39 $107.07 $115.59
| 53 | Static PV (0) $39.00 $63.65 $81.21 $93.10 $100.51
| 54| Variable X 0.0307
55 Volatility Simulate!

FIGURE 7A.2 Logarithmic Present Value Approach
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flows, the present value of cash flows and implementation costs can be com-
puted (cells H9 and H10). The difference will, of course, be the NPV. The
separation here is also key because from the Black-Scholes equation that fol-
lows, the call option is computed as the present value of net benefits dis-
counted at some risk-adjusted rate of return or the starting stock price (S)
times the standard normal probability distribution (@) less the implementation
cost or strike price (X) discounted at the risk-free rate and adjusted by an-
other standard normal probability distribution (®). If volatility (o) is zero,
the uncertainty is zero, and @ is equal to 100 percent. (The value inside the
parenthesis is infinity, meaning that the standard normal distribution value is
100 percent. Alternatively, you can state that with zero uncertainties, you
have a 100 percent certainty). By separating the cash flows, you can now use
these as inputs into the options model, whether it’s using the Black-Scholes
or binomial lattices.

2 2
callzgq)[lﬂ(S/XH(HG /2)TJ_Xerr¢[ln(S/X)+(r—o /Z)T]

oNT oNT

Continuing with the example in Figure 7A.2, the calculations of interest
are on rows 51 to 55. Row 51 shows the present values of the cash flows to
Year 0 (assume that the base year is 2002), while row 52 shows the present
values of the cash flows to Year 1, ignoring the sunk cost of cash flow at
Year 0. These two rows are computed in Excel and are linked formulas. You
should then copy and paste the values only into row 53 (use Excel’s Edit |
Paste Special | Values Only to do this). Then, compute the intermediate vari-
able X in cell D54 using the following Excel formula: LN(SUM(ES2:HS52)/
SUM(D53:H53)). Then, simulate this DCF model by assigning the relevant
input assumptions in the model using the Risk Simulator software and set this
intermediate variable X as the output forecast. The standard deviation from
this X is the periodic volatility. Annualizing the volatility is required, by mul-
tiplying this periodic volatility with the square root of the number of period-
icities in a year.

Now that you understand the mechanics of computing volatilities this
way, we need to explain why we did what we did! Merely understanding the
mechanics is insufficient in justifying the approach or explaining the ration-
ale why we analyzed it the way we did. Hence, let us look at the steps under-
taken and explain the rationale behind them.

Step 1: Compute the present values at times 0 and 1 and sum them. The
theoretical price of a stock is the sum of the present values of all future div-
idends (for non-dividend-paying stocks, we use market-replicating portfolios
and comparables), and the funds to pay these dividends are obtained from
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the company’s net income and free cash flows. The theoretical value of a proj-
ect or asset is the sum of the present value of all future free cash flows or net
income. Hence, the price of a stock is equivalent to the price or value of an
asset, the NPV. Thus, the sum of the present values at time 0 is equivalent to
the stock price of the asset at time 0, the value today. The sum of the present
value of the cash flows at time 1 is equivalent to the stock price at time 1, or
a good proxy for the stock price in the future. We use this as a proxy because
in most DCF models, cash flow forecasts are only a few periods. Hence, by
running Monte Carlo simulation, we are changing all future possibilities and
capturing the uncertainties in the DCF inputs. This future stock price is hence
a good proxy of what may happen to the future stream of cash flows. Re-
member that the sum of the present value of future cash flows at time 1 in-
cluded in its computations all future cash flows from the DCF, thereby
capturing future fluctuations and uncertainties. This is why we perform Step 1
when we compute volatilities using the Log Present Value Returns Approach.

Step 2: Calculate the intermediate variable X. This X variable is identi-
cal to the logarithmic relative returns in the Log Cash Flow Returns Ap-
proach. It is simply the natural logarithm of the relative returns of the future
stock price (using the sum of present values at time 1 as a proxy) from the
current stock price (the sum of present values at time 0). We then set the sum
of present values at time 0 as static because it is the base case, and by defi-
nition of a base case, the values do not change. The base case can be seen as
the NPV of the project’s net benefits and is assumed to be the best estimate
of the project’s net benefit value. It is the future that is uncertain and fluc-
tuates, hence we simulate the DCF model and allow the numerator of the X
variable to change during the simulation while keeping the denominator
static as the base case.

Step 3: Simulate the model and obtain the standard deviation as volatility.
This approach requires that the model be simulated. This makes sense because
if the model is not simulated it means that there are no uncertainties in the
project or asset, and hence, the volatility is equal to zero. You would only sim-
ulate when there are uncertainties, hence you obtain a volatility estimate. The
rationale for using the sample standard deviation as the volatility is similar to
the Logarithmic Cash Flow Returns Approach. If the sums of the present val-
ues of the cash flows are fluctuating between positive and negative values dur-
ing the simulation, you can again move up the DCF model and use items like
EBITDA and net revenues as proxy variables for computing volatility.

Another alternative volatility estimate is to combine both approaches if
enough data exists. That is, from a DCF with many cash flow estimates, com-
pute the PV Cash Flows for periods 0, 1, 2, 3, and so forth. Then, compute
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the natural logarithm of the relative returns of these PV Cash Flows. The stan-
dard deviation is then annualized to obtain the volatility. This is, of course, the
preferred method and does not require the use of Monte Carlo simulation, but
the drawback is that a longer cash flow forecast series is required.

GARCH APPROACH

Another approach is the GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) model, which can be utilized to estimate the volatility of
any time-series data. GARCH models are used mainly in analyzing financial
time-series data, in order to ascertain their conditional variances and volatil-
ities. These volatilities are then used to value the options as usual, but the
amount of historical data necessary for a good volatility estimate remains
significant. Usually, several dozens—and even up to hundreds—of data points
are required to obtain good GARCH estimates. In addition, GARCH mod-
els are very difficult to run and interpret and require great facility with econo-
metric modeling techniques. GARCH is a term that incorporates a family of
models that can take on a variety of forms, known as GARCH(p,g), where
p and g are positive integers that define the resulting GARCH model and its
forecasts.
For instance, a GARCH (1,1) model takes the form of

Y =X Y+ €&

ol =w+oel +pol,

where the first equation’s dependent variable (y,) is a function of exogenous
variables (x,) with an error term (g,). The second equation estimates the vari-
ance (squared volatility ;%) at time ¢, which depends on a historical mean
(o), news about volatility from the previous period, measured as a lag of the
squared residual from the mean equation (g, ;2), and volatility from the pre-
vious period (0, 4?). The exact modeling specification of a GARCH model is
beyond the scope of this book and is not discussed. Suffice it to say that de-
tailed knowledge of econometric modeling (model specification tests, struc-
tural breaks, and error estimation) is required to run a GARCH model,
making it less accessible to the general analyst. The other problem with
GARCH models is that the model usually does not provide a good statistical
fit. That is, it is impossible to predict the stock market, and of course equally
if not harder, to predict a stock’s volatility over time. Figure 7A.3 shows a
GARCH (1,2) on Microsoft’s historical stock prices.
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Dependent Variable: MSFT

Method: ML - ARCH

Date: 02/25/05 Time: 00:20

Sample(adjusted): 3 52

Included ohservations: 50 after adjusting endpoints
Convergence achieved after 67 iterations
Bollerslev-Wooldrige robust standard errors & covariance

Coeficient  Std. Error  z-Statistic Prob.

c 2314431 1.301024  17.78930  0.0000
D(MSFT.1) 0.456040 0062391  7.309364  0.0000
AR(1) 0.967430 0027575  35.08601  0.0000

Wariance Equation

C 0151406 0028717 5272435  0.0000
ARCH(1) 0.148308 0053559  2.769061  0.0056
GARCHI(1) 0.735869 0097780  7.525730  0.0000
GARCHI2) -0.867066 0083186 -10.42325  0.0000
R-squared 0898576 Mean dependent var 24 48620
Adjusted R-squared 0.6884424 5.0 dependent var 1.290867
S E. of regression 0438849 Akaike info criterion 1.106641
Sum squared resid 8.281300 Schwarz criterion 1.374324
Log likelihood -20.66602 F-statistic 63.49404
Durbin-VWatson stat 1.308287 Prob(F-statistic) 0.000000
Inverted AR Roots a7

FIGURE 7A.3 Sample GARCH Results

MANAGEMENT ASSUMPTION APPROACH

A more simple approach is the use of Management Assumptions. This ap-
proach allows management to get a rough volatility estimate without per-
forming more protracted analysis. This approach is also great for educating
management about what volatility is and how it works. Mathematically and
statistically, the width or risk of a variable can be measured through several
different statistics, including the range, standard deviation (o), variance, co-
efficient of variation, and percentiles. Figure 7A.4 illustrates two different
stocks’ historical prices. The stock depicted as a dark bold line is clearly less
volatile than the stock with the dotted line. The time-series data from these
two stocks can be redrawn as a probability distribution as seen in Figure 7A.S5.
Although the expected value of both stocks is similar, their volatilities and
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Stock prices
A

Time

FIGURE 7R.4  Volatility

hence their risks are different. The x-axis depicts the stock prices, while the
y-axis depicts the frequency of a particular stock price occurring, and the
area under the curve (between two values) is the probability of occurrence.
The second stock (dotted line in Figure 7A.4) has a wider spread (a higher
standard deviation o,) than the first stock (bold line in Figure 7A.4). The
width of Figure 7A.5’s x-axis is the same width from Figure 7A.4’s y-axis.
One common measure of width is the standard deviation. Hence, standard
deviation is a way to measure volatility. The term volatility is used and not
standard deviation because the volatility computed is not from the raw cash

Frequency

A

Probability (area
under the curve)

uy=U,
FIGURE 7A.5 Standard Deviation

Stock Price
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flows or stock prices themselves, but from the natural logarithm of the rel-
ative returns on these cash flows or stock prices. Hence, the term volatility
differentiates it from a regular standard deviation.

However, for the purposes of explaining volatility to management, we
relax this terminological difference and on a very high level, state that they
are one and the same, for discussion purposes. Thus, we can make some
management assumptions in estimating volatilities. For instance, starting
from an expected NPV (the mean value), you can obtain an alternate NPV
value with its probability, and get an approximate volatility. For instance, say
that a project’s NPV is expected to be $100M. Management further assumes
that the best case scenario exceeds $150M if everything goes really well, and
that there is only a 10 percent probability that this best-case scenario will hit.
Figure 7A.6 illustrates this situation. If we assume for simplicity that the un-
derlying asset value will fluctuate within a normal distribution, we can com-
pute the implied volatility using the following equation:

Percentile Value — Mean

Volatility = .
Inverse of the Percentile x Mean

For instance, we compute the volatility of this project as:

$150M —-$100M $50M

= =39.02%
Inverse (0.90)x $100M  1.2815x$100M

Volatility =

where the Inverse of the Percentile can be obtained by using Excel’s NORMS
INV/(0.9) function. Similarly, if the worst-case scenario occurring 10 percent
of the time will yield an NPV of $50M, we compute the volatility as:

$50M - $100M _ -$50M

= =39.02%
Inverse (0.10)x $100M  -1.2815x$100M

Volatility =

This methodology implies that the volatility is a symmetrical measure. That
is, at an expected NPV of $100M, a 50 percent increase is equivalent to
$150M while a 50 percent decrease is equivalent to $50M. And because the
normal distribution is assumed as the underlying distribution, this symmetry
makes perfect sense. So now, by using this simple approach, if you obtain a
volatility estimate of 39.02 percent, you can explain to management by stat-
ing that this volatility is equivalent to saying that there is a 10 percent prob-
ability the NPV will exceed $150M. Through this simple analysis, you have
converted probability into volatility using the foregoing equation, where the
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Frequency
A

Best-Case Scenario

$150M
}
|
i 10% Probability
|
I
]
|
|
1
NPV of Project
Expected NPV
$100M
90th Percentile

FIGURE 7A.6  Going from Probability to Volatility

latter is a lot easier for management to understand. Conversely, if you
model this in Excel, you can convert from volatility back into probability.
Figures 7A.7 and 7A.8 illustrate this approach. Open the example file Volatil-
ity Estimates and select the worksheet tab Volatility to Probability to fol-
low along.

Figure 7A.7 allows you to enter the expected NPV and the alternate val-
ues (best-case and worst-case) as well as its corresponding percentiles. That is,
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FIGURE 7A.7  Excel Probability to Volatility Model
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L3 Probability to Volatility (Best-Case Scenario)
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FIGURE 7A.8 Excel Volatility to Probability Model

given some probability and its value, we can impute the volatility. Conversely,
Figure 7A.8 shows how you can use Excel’s Goal Seek function (click on
Tools | Goal Seek in Excel) to find the probability from a volatility. For in-
stance, if the project’s expected NPV is $100M, a 35 percent volatility im-
plies that 90 percent of the time the NPV will be less than $144.85M, and
that only 10 percent (best-case scenario) of the time will the true NPV ex-
ceed this value.

Now that you understand the mechanics of estimating volatilities this
way, again, we need to explain why we did what we did! Merely understand-
ing the mechanics is insufficient in justifying the approach or explaining the
rationale why we analyzed it the way we did. Hence, let us look at the as-
sumptions required and explain the rationale behind them.

Assumption 1: We assume that the underlying distribution of the asset
fluctuations is normal. We can assume normality because the distribution of
the final nodes on a superlattice is normally distributed. In fact, the Brown-
ian Motion equation shown earlier requires a random standard normal dis-
tribution (). In addition, a lot of distributions will converge to the normal
distribution anyway (a Binomial distribution becomes normally distributed
when the number of trials increases; a Poisson distribution also becomes
normally distributed with a high average rate; a Triangular distribution is a
normal distribution with truncated upper and lower values; and so forth)
and it is not possible to ascertain the shape and type of the final NPV distri-
bution if the DCF model is simulated with many different types of distribu-
tions (e.g., revenues are Lognormally distributed and are negatively correlated
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to one another over time, while operating expenses are positively correlated
to revenues but are assumed to be distributed following a Triangular distribu-
tion, while the effects of market competition are simulated using a Poisson dis-
tribution with a small rate times the probability of technical success simulated
as a Binomial distribution). We cannot determine theoretically what a Log-
normal minus a Triangular times Poisson and Binomial, after accounting for
their correlations, would be. Instead, we rely on the Central Limit Theorem
and assume the final result is normally distributed, especially if a large num-
ber of trials are used in the simulations. Finally, we are interested in the log-
arithmic relative returns’ volatility, not the standard deviation of the actual
cash flows or stock prices. Stock prices and cash flows are usually Lognor-
mally distributed (stock prices cannot be below zero) but the logs of the rel-
ative returns are always normally distributed. In fact, this can be seen in Figures
7A.9 and 7A.10, where the historical stock prices of Microsoft from March
1986 to December 2004 are tabulated.

Assumption 2: We assume that the standard deviation is the same as the
volatility. Again, referring to Figure 7A.10, using the expected returns chart,
the average is computed at 0.58 percent and the 90th percentile is 8.60 per-
cent, and the implied volatility is found to be 37 percent. Using the data down-
loaded, we compute the empirical volatility for this entire period to be 36
percent. So, the computation is close enough such that we can use this ap-
proach for management discussions. This is why the normality assumption
and using a regular standard deviation as a proxy are sufficient.
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Assumption 3: We used a standard-normal calculation to impute the
volatility. As we are assuming that the underlying distribution is normal,
we can compute the volatility by using the standard-normal distribution. The
standard normal distribution Z-score is such that:

z=X"H this means that o = XZH
o V4

and because we normalize the volatility as a percentage (0*), we divide this
by the mean to obtain:

In layman’s terms, we have:

Percentile Value — Mean

Volatility =
Inverse of the Percentile x Mean

Again, the inverse of the percentile is obtained using Excel’s function:
NORMSINV.
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MARKET PROXY APPROACH

An often used (not to mention abused and misused) method in estimating
volatility applies to publicly available market data. That is, for a particular
project under review, a set of market comparable firms’ publicly traded
stock prices are used. These firms should have functions, markets, risks,
and geographical locations similar to those of the project under review.
Then, using closing stock prices, the standard deviation of natural loga-
rithms of relative returns is calculated. The methodology is identical to that
used in the logarithm of cash flow returns approach previously alluded to.
The problem with this method is the assumption that the risks inherent in
comparable firms are identical to the risks inherent in the specific project
under review. The issue is that a firm’s equity prices are subject to investor
overreaction and psychology in the stock market, as well as countless other
exogenous variables that are irrelevant when estimating the risks of the proj-
ect. In addition, the market valuation of a large public firm depends on mul-
tiple interacting and diversified projects. Finally, firms are levered, but
specific projects are usually unlevered. Hence, the volatility used in a real op-
tions analysis (o) should be adjusted to discount this leverage effect by di-
viding the volatility in equity prices (Groury) by (1 + D/E), where D/E is the
debt-to-equity ratio of the public firm. That is, we have

_ Okouity

1+2

ORrRO

This approach can be used if there are market comparables such as sector
indexes or industry indexes. It is incorrect to state that a project’s risk as meas-
ured by the volatility estimate is identical to the entire industry, sector, or the
market. There are a lot of interactions in the market such as diversification,
overreaction, and marketability issues that a single project inside a firm is not
exposed to. Great care must be taken in choosing the right comparables as the
major drawback of this approach is that it is sometimes hard to find the right
comparable firms and the results may be subject to gross manipulation by sub-
jectively including or excluding certain firms. The benefit is its ease of use—
industry averages are used and it requires little to no computation.

VOLATILITY VERSUS PROBABILITY OF
TECHNICAL SUCCESS

The discussion of volatility will be incomplete if we do not discuss what does
and does not go into a volatility estimate. Volatility drives the value of an op-
tion, and the value of an option is the value of strategic flexibility. Hence,
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items that should be modeled and simulated in a DCF to obtain the volatility
estimate should be those items that will change a person’s decision about
whether to execute a particular project, such as fluctuations in revenues, price,
operating expenses, market size, market share, competition, and so forth. As
an example, if prices increase, management may decide to execute an expan-
sion option to spin off another ancillary product or expand to another market.
However, in the R&D area, for example, in the pharmaceutical and biotech
industries, R&D progresses through stages (Preclinical Phase I, Phase II,
Phase III, Biologics FDA approval, go to market strategy, and so forth) where
each stage has a particular probability of technical success or PTS (based on
historical experience, industry averages, scientific analysis, best-guesses, or
scenario analysis).

These PTS probabilities are not strategic options! That is, if a phase fails,
you’re out of the game, regardless of all the options that exist currently or
in the future. These PTS values should be modeled in the DCF and can be sim-
ulated as well (use a Bernoulli distribution and set the PTS as the probabil-
ity parameter in the Risk Simulator software). These PTSs can be assumed
to be statistically independent of each other and can be multiplied with one
another, or a correlation can be set among them, or a modeling relationship
can be created—set all future cash flows to a particular phase’s PTS just like
an on-off switch, where all future cash flows at and after a particular phase
either occur or they don’t if the phase fails. Simulate the model and use the
resulting average NPV as the expected value of the project, after accounting
for these PTS events. Then, simulate the model again without these PTSs
changing, and capture the volatility as discussed in this appendix. The volatil-
ity therefore captures the uncertainties in the market events that determine
what options will be executed. For instance, PTS events are discrete event
simulations that are 7ot options—you are stuck with whatever happens. How-
ever, if a phase is successful, management may still have the strategic option
to stop and abandon a phase, or decide to continue onto another phase (se-
quential compound option) even if the market outlook is bad but the R&D
phase is successful. The strategic option here is the stage-gate development,
not the PTS. Therefore, both PTS and stage-gate options have to be com-
puted, but do not double count their values—incorrectly simulating PTS to
obtain the volatility will artificially inflate the volatility and the option value,
which makes no sense because a highly risky project with wide swings in PTS
should not have higher project values.
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Black-Scholes in Action

This appendix discusses the fundamentals of the Black-Scholes model. Al-
though the Black-Scholes model is not a good approach to use in its entirety,
it is often useful as a gross approximation method as well as a benchmark.
Hence, understanding the fundamentals of the Black-Scholes model is im-
portant.

The Black-Scholes model is summarized as follows, with a detailed ex-
planation of the procedures by which to obtain each of the variables.

Call = Stq)(d]) - Xe*rf(T)(D(d2>

o ln<%>+(rf+zlaz)(T)
where d, = ~NT
and dz = dl - 0'\/?

is the cumulative standard normal distribution function;

is the value of the underlying asset or the stock price;

is the strike price or the cost of executing the option;

is the nominal risk-free rate;

is the annualized volatility; and

is the time to expiration or the economic life of the strategic option.

HS I X » s

In order to fully understand and use the model, we need to understand
the assumptions under which the model was constructed. These are essen-
tially the caveats that go into using real options in valuing any asset. These as-
sumptions are violated quite often, but the model should still hold up to
scrutiny. The main assumption is that the underlying asset’s price structure
follows a Geometric Brownian Motion with static drift and volatility param-
eters and that this motion follows a Markov-Weiner stochastic process. The
general derivation of a Markov-Weiner stochastic process takes the form of
dS = uSdt + 0SdZ, where dZ = e\V/dt and dZ is a Weiner process, u is the
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drift rate, and o is the volatility measure. The other assumptions are fairly
standard, including a fair and timely efficient market with no riskless arbi-
trage opportunities, no transaction costs, and no taxes. Price changes are also
assumed to be continuous and instantaneous.

The variables in the Black-Scholes model have the following relation-
ships to the resulting call value, assuming a European call:

® Underlying asset value +
m Expiration cost —

® Time to expiration +

® Volatility +

® Risk-free rate +
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Binomial Path-Dependent and
Market-Replicating
Portfolios

Another method for solving a real options problem includes the use of bi-
nomial lattice structures coupled with market-replicating portfolios. In
order to correctly value market-replicating portfolios, we must be able to
create a cash-equivalent replicating portfolio from a particular risky secu-
rity and risk-free asset. This cash-equivalent replicating portfolio will have
the same exact payoff series as the project in each state where the price of
the cash equivalent replicating portfolio will be the value of the project it-
self. This is because we introduce a Martingale-based ¢ measure, which is
in essence a risk-adjusted or risk-neutral parameter. It is therefore not nec-
essary to use probability estimates of the states of nature. The risk-adjusted
discount rate is not computed, and nothing is known about the risk toler-
ances of the firm. All the required information is implicitly included in the
relative prices of the risk-free asset and risky asset. The assumption is that
as long as prices are in true equilibrium, the market information tells us all
that we need to know. The other assumption is that the portfolio is arbi-
trage-free, such that the Arbitrage Pricing Theory holds true at any point in
time. However, the Arbitrage Pricing Theory does not require the actual
portfolio to be observable, and the portfolio set does not have to be in-
tertemporally stationary.

Compare this complicated method using market-replicating portfolio
with a much simpler to use risk-neutral probability approach. In theory, both
approaches obtain the same results, but the latter approach is much simpler
to apply. Thus, in this book, we focus on the risk-neutral probabilities ap-
proach to solve sample real options problems. However, for completeness,
the following text illustrates a simple market-replicating approach to solving
a real options problem.

215
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Underlying Asset Lattice 134.99
122.14
110.52 110.52
100.00 100.00
90.48 90.48
81.87
74.08

FIGURE 7C.1 Underlying Asset Lattice in Risk-Neutral Probability Approach

In this example, we solve a simple American call option using the risk-
neutral probability approach (Figures 7C.1 and 7C.2), and then solve the
same option using the market-replicating portfolio approach to compare the
results. We will verify that theory holds such that both approaches obtain
identical call option values.

For both approaches, assume the following parameters: asset value =
$100, strike or implementation cost = $100, maturity = 3 years, volatility =
10%, risk-free rate = 5%, dividends = 0%, and steps = 3.

Risk-Neutral Probability Approach

Stepping Time = 1.00

Up Jump Size (up) = 1.1052
Down Jump Size (down) = 0.9048
Risk-Neutral Probability = 0.7309

Figures 7C.1 and 7C.2 show the computations using the risk-neutral
probability approach.

Market-Replicating Portfolio Approach

In solving the market-replicating approach, we require the use of the fol-
lowing formulae:

m Hedge ratio (b):
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m Debt load (D):
m Call value (C) at node i:

® Risk-adjusted probability (q):

=M

i
Sup - Sdown

obtained assuming S| = g;S,, + (1 = 4,)S4oun- This means that S, = g;5,, +
Sdown_ qiSdown and qi[Sup - Sdown] = Si—l - Sdowns SO we get

:M

1

Sup - Sdown

In addition, a new naming convention is required, as seen in Figure 7C.3.

Option Valuation Lattice

34.99
27.02
20.65 10.52
15.66 7.31
5.08 0
0
0

FIGURE 7C.2 Valuation Lattice in Risk-Neutral Probability Approach
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S3UU
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FIGURE 7.3 New Naming Convention in the Market-Replicating Approach

Step 1: Get the call values at the terminal nodes. Using call value (C) at
node i: C; = max [S;; — cost, 0] we get:

Cauy = 34.99
Cayp = 10.52
Cspy =0
Cspp =0

Step 2: Get the hedge ratios for the terminal branches. Using the hedge
ratio (h):

_ Cup ~Clown
=
l Sup - Sdown
we get:
hZU = ].OOOO
by = 0.5250

hZD = OOOOO
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Step 3: Get the debt load for the terminal branches. Using the debt load
(D): Diy = Si(hiy) = C; we get:

D,y =100.0000
DZM = 47.5030

Step 4: Repeat to obtain the call values one node back, ¢ = 2.

CZU = 27.0171
Cyy =7.3137
C,p =0.0000

Step 5: Repeat and obtain the hedge ratios for the one branch back, ¢ = 1.

hlU = 08899 th = 0.4034

Step 6: Repeat and obtain the debt load for one branch back, ¢ = 1.

Dy =81.6753
Dyp =33.0263

Step 7: Get the call values one node back.

Cyy =20.6598
ClD = 5.0840

Step 8: Get the hedge ratios for two branches back, ¢ = 0.

by =0.7772 (rounded)

Step 9: Get the debt load for two branches back, 7 = 0.

D, = 65.2363 (rounded)

Step 10: Get the call value at # = 0, the option value of this analysis.

C,=15.66
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The resulting 15.66 is identical to the results from the risk-neutral probability
approach (Figure 7C.2) but this market-replicating method is more tedious
and very difficult to apply and very difficult to explain. Therefore, the risk-
neutral probability approach is preferred for real options analysis. Finally, the
risk-neutral probability approach is more flexible and changing its inputs or
adding certain exotic conditions are very easy but can sometimes be mathe-
matically intractable when applying the market replicating approach.
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Single-State Static
Binomial Example

DIFFERENTIAL EQUATIONS

This appendix illustrates yet another approach to solving real options prob-
lems, that of basic differential equations. In this example, suppose that a cer-
tain firm has an option to change its current mummification embalming
technology from the traditional Dull Old Method (D) to a new and revolu-
tionary approach using the latest liquid nitrogen freezing equipment in
Cryogenic Technology (C). Obviously, in order to do so, it would cost the
firm some restructuring cost of approximately $9,000 to convert the exist-
ing lab into a freezing chamber and an additional $1,000 scrapping cost to
dismantle the old equipment. Hence, the total cost of implementation is as-
sumed to be $10,000 and, for simplicity, assumed to be fixed no matter
when the implementation takes place, either at present or sometime in the
future. The benefit of the new cryogenics technology is that the mummifica-
tion cost will be fixed at $500 each. This incremental fixed cost is highly de-
sirable to senior management as it assists in cost-cutting strategies and
provides a really good way to forecast future profitability.

Based on the current technology using the same Dull Old Method, it
costs on average $2,000 in incremental marginal cost. However, this cost
fluctuates depending on market demand. For instance, if the market is good
(G), where the demand for mummification increases, the firm will have to
hire additional help and have employees work overtime, costing on average
$3,000 marginal cost per unit. In a down or bad (B) market, when demand
is significantly low, the firm can lay off individuals, put key employees on a
rotating part-time schedule, and cut overhead costs significantly, resulting in
only a $400 incremental marginal cost. The question is, will the new cryo-
genics be financially feasible assuming there is a 50 percent chance of a good
upswing market for mummification and a 10 percent cost of capital (r)? If it
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is feasible, then should the implementation be done now or later? The cost
structure is presented graphically in Figure 7D.1 (all values in $).

If the firm moves and starts at time 0, profits or the benefits from cost
savings will be

7= DMC, — CMC, = $2,000 — $500 = $1,500

Restructure Cost = $9,000 (RC)
Scrapping Cost = $1,000 (SC)
Total Cost = RC + SC = $10,000 (TC)

Time = 0 Time =1
Good outcome
DMC, =2,000 cost CMCS = 500 fixed cost
CMC, = 500 fixed cost DMCS = 3,000 cost
70 = 1,500 76 =2.500

Bad outcome
CMCE = 500 fixed cost

DMCEB = 400 cost
w8 =-100

where we define

DMC,
CMC,

0
CMCS
DMCS

o6

CMCE
DMCE
B

Ty

FIGURE 7D.1

Dull Old Method’s marginal cost at time 0

Cryogenics method’s marginal cost at time 0

Profits through savings, at time 0

Cryogenics method’s marginal cost at time 7 with good mar-
ket conditions

Dull method’s marginal cost at time # with good market con-
ditions

Profits through savings, at time 7 with good market conditions
Cryogenics method’s marginal cost at time 7 with bad market
conditions

Dull method’s marginal cost at time 7 with bad market con-
ditions

Profits through savings, at time 7 with bad market conditions

Cost Structure
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This is the current period (time 0) cost savings only. Because the implemen-
tation has already begun, the future periods will also derive cost savings such
that for time where 7= 1, we have under the good market conditions

78 =DMCS - CMCF = $3,000 — $500 = $2,500
Under the bad market conditions, we have
mB=DMCE - CMC} =$400 - $500 = —$100

Assuming we know from historical data and experience that there is a
50 percent chance of a good versus a bad market, we can take the expected
value of the profits E(m) or cost savings of these two market conditions:

E(my) = pml + (1 — p)a P = 0.5($2,500) + (0.5)(—$100) = $1,200

Because this expected value of $1,200 occurs for every period in the future
with the same fixed value with zero growth, the future cash flow stream can
be summarized as perpetuities, and the present value of executing the im-
plementation now E(m,) will be

$1,200

E(my) = > E(m)/(1 +7r)'=my+ E(m)/r = $1,500 + =$13,500

1

Hence, the net present value of the project is simply the value generated
through the cost savings of the cryogenics technology less the implementa-
tion cost:

NPV = m, — TC, = $13,500 — $10,000 = $3,500

If the firm decides to switch at a future time when k 21, given a good
market (wg):

r+1
7T1C<1+7’> —7T1G|: }

e —ZE 7 5/wc)(1 + 7k = ,

ng

1
=$2 500[ 01 } $27,500

Similarly, given that the market is unfavorable (wy), at time k >1:

©

1
=ZE(w5/wu><1+r>k"swf[’+ ]

7

1.1
np= —$100[0—1] =-$1,100
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For instance, assume k =1,
Iy = o+ [p€(at’) + (1= pO)(m )1 +7)

I1, = $1,500 +[0.5($27,500) + (1 — 0.5)(—$1,100)]/(1 + 0.1)
=$13,500

NPV =1I,—TC, = $13,500 — $10,000 = $3,500

However, this is incorrect because we need to consider the analysis in terms
of strategic optionalities. As we have the opportunity, the right to execute and
not the obligation to do so, the firm would execute the option if it is finan-
cially feasible and not execute otherwise. Hence, the options are feasible only
when the good market outcome occurs in the future and not executed in the
bad market condition. Therefore, the actual net present value should be

Mfp, Ifpe [ $27,500 — $10,000

(1+r)+(1+r):0+05 11 ]=$7,954

Hence, we can create a generic valuation structure for the option value
as above. To add a level of complexity, the total cost should be discounted
at a risk-free rate (r/), as we segregate the market risk (II;) and private risk
(TC), and the structure could be represented as

[eapr = max [Ho - TC],

po(y) TC
1+7’ 1+Tf

= max

¢ ofrt 1
[77 . E(m) ]+ lp 771( r > TC ]+
0 )

1+7r _1+rf

This simply is to calculate the maximum value of either starting now, which
is represented by [II, — TC] or starting later, which is represented as

pe(my) TC

1+7r 1+rf

Because the future starting point has been collapsed into a single static state,
any starting points in the future can be approximated by the valuation of a
single period in the future.
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OPTIMAL TRIGGER VALUES

A related analysis is that of optimal trigger values. Looking at the formula-
tion for the call valuation price structure, if there is a change in total cost,
that is, the initial capital outlay, something interesting occurs. The total cost
in starting now is not discounted because the outlay occurs immediately.
However, if the outlay occurs in the future, the total cost will have to be dis-
counted at the risk-free rate. Therefore, the higher the initial cost outlay, the
discounting effect of starting in the future decreases the effective cost in
today’s dollar, hence making it more efficient to wait and defer the cost until
a later time. If the cost is lower and the firm becomes more operationally ef-
ficient, it is beneficial to begin now as the value of starting now is greater
than waiting. The total cost break-even point can be obtained by solving the
call valuation equation above for total cost and can be represented as

GG r+ 1)
1 ]—1 Efm] 7“( r
)n 7T0+

(147 a

rer= [1 a r (1+7r)7

If total cost of implementation exceeds TC* above, it is optimal to wait, and
if total cost does not exceed TC?, it is beneficial to execute the option now. Re-
member that the optimal trigger value depends on the operational efficiency of
the firm as well, because it is a dynamic equation given that the optimal trig-
ger value depends on how much money can be saved with implementation of
the Cryogenic modifications. Refer to Chapters 10 and 11 for details on opti-
mal timing and optimal trigger values computed using binomial lattices.

Uncertainty Effects on Profit or Cost Savinygs 77

Suppose we keep the first moment and change the second moment, that is,
change the spread and, hence, the risk or uncertainty of the profit or cost
savings while leaving the expected payoffs the same. It would make sense
that waiting is better. Let’s see how this works. Recall that the original case
had 7§ =$2,500, w2 = —$100, with a 50 percent chance of going either
way, creating an expected value of 0.5($2,500 — $100) = $1,200. Now,
suppose we change the values to 75* = $3,000 and 72* = —$600, with a
50 percent chance of going either way, creating a similar expected value of
0.5($3,000 — $600) = $1,200 as in the original case. However, notice that
the risk has increased in the second case as the variability of payoffs has in-
creased. So, we can easily recalculate the value of

r 0.1
(for all k= 1) which is higher than the original $27,500.

1+7 1.1
e = wf[ ] = $3,ooo[—] = $33,000,
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The conclusion is that the higher the uncertainty, the higher is the value
of waiting. This is because the firm has no information on the market de-
mand fluctuations. The higher the market volatility, the better off the firm
will be by waiting until this market uncertainty has been resolved and it
knows what market demand looks like before proceeding with the capital
investment.
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Sensitivity Analysis with
Delta, Gamma, Rho, Theta,
Vega, and Xi

Using the corollary outputs generated by options theory, we can use the re-
sults—namely, Delta, Gamma, Rho, Theta, Vega, and Xi—as a form of sen-
sitivity analysis. By definition, sensitivity analysis, or stress testing, looks at
the outcome of the change in the option price given a change in one unit of
the underlying variables. In our case, these sensitivities reflect the instanta-
neous changes of the value of the option given a unit change in a particular
variable, ceteris paribus. In other words, we can form a sensitivity table by
simply looking at the corresponding values in Delta, Gamma, Rho, Theta,
Vega, and Xi. Delta provides the change in value of the option given a unit
change in the present value of the underlying asset’s cash flow series.
Gamma provides the rate of change in delta given a unit change in the un-
derlying asset’s cash flow series. Rho provides us with the change in the
value of the option given that we change the interest rate one unit, Theta
looks at the change per unit of time, Vega looks at the change per unit of
volatility, and Xi looks at the change per unit of cost. In other words, one
can provide a fairly comprehensive view of the way the value of the option
changes given changes in these variables, thereby providing a test of the sen-
sitivity of the option’s value. A worse-case, nominal case, and best-case
scenario can then be constructed. The sensitivity table not only provides a
good test of the robustness of our results but also provides great insight into
the value drivers in the firm, that is, which variables have the most impact
on the firm’s bottom line. The following provides the derivations of these sen-
sitivity measures for a European option without dividend payments. In actual
real options analysis, it might be easier to compute the sensitivities based on a
percentage change to each input rather than instantaneous changes (refer to
Chapter 9’s tornado and sensitivity analysis in Risk Simulator).
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CALL DELTA

Starting from C = S,N(d,) — Xe "TN(d,), where

m(i{—f) + <r+3102)<'r>
d1: \/T andd2=d1—aﬁ
g

we can get the call Delta, defined as the change in call value for a change in
the underlying asset value, that is, the partial derivative

aC,
as,

at an instantaneous time ¢. Differentiating, we obtain:

Delta = A = 3?: =N(dy) + S, al\a[gl) ~ Xe™T al\;(s”
g g
3?: =N(d,) + S, e\/zz_w ‘3‘; — Xe'T i/zz_w g—‘;j
aC S s S s,
as: :N(d1)+8tﬁ ~T —Xe T I VT
A2 T _LooridioVT
RO S PR s
oC eizld% i Xe™'T Lot
BS: =N(d,) + T _1 — 5, e 2 eln(S,/X)+(r+aZ/2)T:|
oC eii]d% [ XeoT -lor S Lot
aS: = N(d)) + ——— _1— 5 ¢ ~eTe? ]
Delta=A= 9 _ N(d;)
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CALL GAMMA
Gamma =1 = g—i
an_ 1,
aSt \/2’77 aSz
a1
aSt V2 S,a'\/T
ld1
0A
Gamma =1 = a—St 5o
CALL RHO
Rho=pP= 25t _, IN(d,) +XTe "TN(dy) — Xe T IN(dy)
oar ar or
-1 _1p
aCt — ’ a_dl —rT _ 7rTe ’ a_dz
> —S, e or + XTe"TN(d,) — Xe = o
ldz
aC, e ? od; 2 Y 3d, .
F \/2—W|:Sz 5, X o |+ XTe " "N(dy)

ldz

‘ 1
aaff \/_ 8:1 |:Sz — Xe'Te 2 T eln(S/X)+(r+a-z/2)T:| + X Te "™N(d,)
-1a3
9C, e 2 adi[. XS, .
Y \/2—77 5 [S X ]+XTe N(d,)
Rho=P= aaf’ = XTe "TN(d,)
CALL THETA
aC oN(d 0
e
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aC, S 1 eﬁld% ad, e TN — X 1 -l od,
— —_ =7 — =7 e —_—
T N or TrXe N = Xe R oa T T
S,
WMo T ey ad_ad o
ST~ 2072 T 20T 2 | Ve G T T 2VT
aC, E 1 1494, X TN — X -lai[ ad, o
— e —_— -r J— -r e —
aT ~ "' \Varm or T TXeTNIdy) = XeT T OpT aT  2VT
g
aC, e [ ad, -l 3d, o .
oT ~ \an |Yar “XeTe (a? - ﬁ) T rXe " IN(dy)
g
oC e 2 [ od ~L2r) od
Yy Sta—jf —XeTe 2 e"dl\ﬁ(ai;—%ﬂ-i-rxg"TN(dz)
.y
aC 2'r ad ad
aTt — e Gy Sta_ji_xe—ﬁ —%(JZT)+1n(S/X)+(r+(rZ/2)T<a_tl_ ﬁﬂJere"TN(dz)
g
aCt_ez _Sa_dl Sa_dl Stio- X—rTNd
oT — ~ax [>T “Sor tovT | TrXeTNd)
W
-9, ~Soe 2" .
Theta =0 = T = NooT — rXe "TN(d,)
CALL VEGA
aC, 9
Vega=V= aat = a—U[StN(dl) — Xe "™N(d,)]
aC, _ S: 7';11% a_dl _ T 7%11% a_dl
do  \2xm ¢ do Xewe dJdo
E _ L %dﬁ a_dl _ T 7(d2—dz)a_dz
do  \2xm [St Jdo Xeme 80’]
9, A A eTeaonT 3
do 2= [Sz Jdo Xee Jdo ]
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ﬁ L 7%1121 a_d|7 —rT 7%UZT ln(S/X)+(r+trZ/2)Ta_dz:|
o \2=w ¢ S Jdo Xewrte ¢ oo
aC, _ 1 e751d2’ S a_d1 -s a_dz]
Jdo V2T " 9o s
aC, 1 4 [od,  od, }
=t —+ =L
Jdo V2 ¢ S Jdo Jdo VT
-di
2
Vega=V = J9C, = ﬂ
Jdo N
CALL XI
= 9C T oN(d,) o oN(d,)
Xi=g= 9X N(d,)e T+ S 5X Xe X
142 _142
aCt = —r : a_d1 T e’ adz
X, - N(d,)e T+ S, 5= oX Xe 520X
aC 2y R
_t:,Nd 77T+Se——t,X77Te 13
ax, - NS e T X T e T
12 162T+d,oVT
aCt - _ —rT L |: _ —rT ]
ax, Nt g [ Xe s,
12 1
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Reality Checks

THEORETICAL RANGES FOR OPTIONS

One of the tests to verify whether the results calculated using the real options
analytics are plausible is to revert back to financial options pricing theory.
By construction, the value of a call option can be no lower than zero when
the option is left to expire, that is, we have the call option value, C = max
[S — Xe "7, 0], and it can be no higher than the value of the asset, which we
have defined as S, such that C<=S. If the calculated results fall outside this
range, we can reasonably say that the analysis is flawed, potentially due to
unreasonable assumptions on creating the forecast cash flows. However, if
the results fall comfortably within the range, we cannot be certain it is cor-
rect, only reasonably sure the analysis is correct assuming all the input
variables are also reasonable. The main thrust of using this option range
spread is to test the width of this spread, that is, the tighter the spread, the
higher the confidence that the results are reasonable. Also, one could per-
form a sensitivity analysis by changing the input variables and assumptions
to see if the spread changes, that is, if the spread widens or shifts.

SMIRR AND SNPV CONSISTENCY

Another plausibility test includes the use of a sequential modified internal
rate of return (SMIRR) method and a sequential net present value (SNPV)
method. If all goes well in the forecast of free cash flow and the discounted
cash flow analysis holds up, then the MIRR' and NPV of the cash flow
stream should theoretically be smooth. That is, the entire stream of cash
flow should have MIRR and NPV similar to that of the cash flow stream less
the first year’s free cash flow, eliminating the first year’s free cash flow as a
reduction of the original net present value and setting the first year’s cash
flows to zeros. This method is repeated for all subsequent years. The reinvest-
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ment rate and the discount rate could be set at different levels for the com-
putation of the MIRR and NPV. This interest-rate-jackknifing approach
looks at the consistency and smoothness of the predicted cash flows over
time. However, this approach is cumbersome and is seldom used.

MINIMAX APPROACH

If relevant probabilities are provided by the firm’s management on specific
outcomes of the cash flow over time, a regret analysis can be performed as a
means of calculating the relevant value of the asset. This regret analysis takes
the form of a Minimax approach in Bayesian probability theory in the context
of decision sciences. Essentially, it measures the relevant outcome of a forward-
looking cash flow series given the appropriate probabilities, calculates the ex-
pected monetary value of the scenario, and identifies the scenario at which one
minimizes the maximum amount of regret—hence the name Minimax. How-
ever, even if relevant probabilities are provided, they should not be used be-
cause these forecasted values add an additional element of uncertainty and
because management can hardly be expected to provide a solid, dependable,
and reliable set of economic forecasts, let alone the respective probabilities as-
sociated with each forecast’s outcome. The analysis can be coupled within a
Game Theory framework, where the best strategic outcome under the Nash
equilibrium will always be observed. The specifics of Game Theory are beyond
the scope of this book.

IMPLIED VOLATILITY TEST

Using the developed real options model and approach, we could set the volatil-
ity measure as the dependent variable to calculate. This implied volatility can
then be measured against the historical volatility of the firm’s cash flow situa-
tion or benchmarked against the volatility of cash flows of corresponding
comparable companies under similar risks, functions, and products. The im-
plied volatility can then be tested using a parametric t-test or a nonparametric
Wilcoxon sign-rank test? to see if it is statistically identical to the mean and
median of the set of comparable firms’ volatilities.

An alternative is to use the Newton-Raphson search criteria for implied
volatility measures through a series of guesses.

o Wl
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Applying Monte Carlo
Simulation to Solve
Real Options

Monte Carlo simulation can be easily adapted for use in a real options par-
adigm. There are multiple uses of Monte Carlo simulation, including the
ability to obtain a volatility estimate as input into the real options models, ob-
taining a range of possible outcomes in the discounted cash flow analysis,
and simulating input parameters that are highly uncertain. Here, the discus-
sion focuses on two distinct applications of Monte Carlo simulation: solving
a real options problem versus obtaining a range of real options values. Al-
though these two approaches are discussed separately, they can be used to-
gether in an analysis. See Chapter 9 for more technical details of running
Monte Carlo simulations using the author’s Risk Simulator software.

APPLYING MONTE CARLO SIMULATION
TO OBTAIN A REAL OPTIONS RESULT

Monte Carlo simulation can be applied to solve a real options problem,
that is, to obtain an option result. Recall that the mainstream approaches in
solving real options problems are the binomial approach, closed-form equa-
tions, partial-differential equations, and simulation. In the simulation ap-
proach, a series of forecast asset values are created using the Geometric
Brownian Motion, and the maximization calculation is applied to the end
point of the series, and discounted back to time zero, at the risk-free rate.
That is, starting with an initial seed value of the underlying asset, simulate out
multiple future pathways using a Geometric Brownian Motion, where 8S, =
S,_1(rf(81) + ce\V/81). That is, the change in asset value 8, at time ¢ is the
value of the asset in the previous period S,_; multiplied by the Brownian Mo-
tion (rf(8¢) + o0&V 8t). Recall that f is the risk-free rate, 8t is the time-steps,
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o is the volatility, and ¢ is the simulated value from a standard-normal distri-
bution with mean of zero and a variance of one.

Figure 7G.1 illustrates an example of a simulated pathway used to solve
a European option. Note that simulation can be easily used to solve European-
type options, but it is fairly difficult to apply simulation to solve American-
type options.! In this example, the one-year maturity European option is
divided into five time-steps in the binomial lattice approach, which yields
$20.75, as compared to $19.91 using the continuous Black-Scholes equation,
and $19.99 using 1,000 Monte Carlo simulations on 10 steps. In theory,
when the number of time-steps in the binomial lattices is large enough, the
results approach the closed-form Black-Scholes results. Similarly, if the num-
ber of simulation trials are adequately increased, coupled with an increase in
the simulation steps, the results stemming from Monte Carlo simulation also
approach the Black-Scholes value. See Figure 7G.1

The first step in Monte Carlo simulation is to decide on the number of
steps to simulate. In the example, 10 steps were chosen for simplicity. Start-
ing with the initial asset value of $100 (S,), the change in value from this ini-
tial value to the first period is seen as 8S, = S, (rf(5¢) + o\ 61). Hence, the
value of the asset at the first time-step is equivalent to S; = S, + 85, =S, +
So(rf(8¢) + o0&V 8t). The value of the asset at the second time-step is hence S,
=8, +8S, =5, +8,(rf(81) + 0&\V/'8t), and so forth, all the way until the ter-
minal 10th time-step. Notice that because & changes on each simulation
trial, each simulation trial will produce an entirely different asset evolution
pathway. At the end of the 10th time-step, the maximization process is then
applied. That is, for a simple European option with a $100 implementation
cost, the function is simply Cy ; = Max[S,; — X, 0]. This is the call value C;;
at time 10 for the ith simulation trial. This value is then discounted at the
risk-free rate to obtain the call value at time zero, that is, C, ;= Cy e /().
This is a single-value estimate for a single simulated pathway.

Applying Monte Carlo simulation for 1,000 trials and obtaining the
mean value of C; yields $19.99. This is termed the path-dependent simula-
tion approach. There is a less precise shortcut to this simulation. That is, col-
lapse all the 10 time-steps into a single time-step, using S =S, + 6S1 =S, +
So(rf(T) + 0e\V/T ), where the time T in this case is the one-year maturity.
Then the call option value can be estimated using C,; = Max[(Sr; — X)e™"T),
0]. Simulating the results 1,000 times yields the estimated option value of
$18.29. Obviously, the higher the number of simulations and the higher the
number of steps in the simulation, the more accurate the results.

Figure 7G.2 illustrates the results generated by performing 1,000 simu-
lation trials. Notice the lognormal distribution of the payoff functions.
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Applying Monte Carlo Simulation to Solve Real Options 239

APPLYING MONTE CARLO SIMULATION TO
OBTAIN A RANGE OF REAL OPTIONS VALUES

Alternatively, Monte Carlo simulation can be applied to obtain a range of
real options values. That is, as seen in Figure 7G.3, risk-free rate and
volatility are the two example variables chosen for simulation. Distribu-
tional assumptions are assigned to these two variables, and the resulting op-
tions values using the Black-Scholes and binomial lattices are selected as
forecast cells.

The results of the simulation are essentially a distribution of the real op-
tions values as seen in Figure 7G.4.2 Notice that the ranges of real options
values are consistent for both the binomial lattice and the Black-Scholes
model. Keep in mind that the simulation application here is used to vary the
inputs to a real options model to obtain a range of results, not to model and
calculate the real options itself. However, simulation can be applied to both
simulate the inputs to obtain the range of real options results and also to
solve the real options model through path-dependent modeling. However,
a word of caution is in order. Recall that volatility is an input in a real op-
tions analysis, which captures the variability in asset value over time, and
a binomial lattice is a discrete simulation technique, while a closed-form so-
lution is obtained using continuous simulation models. Simulating real op-
tions inputs may end up double-counting a real option’s true variability. See
Figure 7G.4.

Note that the distribution of the terminal values is lognormal in nature,
as all values are non-negative. Another word of caution is important here.
Attempting to simulate just the terminal values without using the Brownian
Motion approach will most certainly yield incorrect answers in general. The
answers may be similar but will never be robust. Thus, simply simulating the
terminal value outcomes and valuing them that way is completely flawed.
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Trinomial Lattices

For the sake of completeness, below is an illustration of a trinomial lattice (see
Figure 7H.1). Building and solving a trinomial lattice is similar to building and
solving a binomial lattice, complete with the up/down jumps and risk-
neutral probabilities. However, the following recombining trinomial lattice is
more complicated to build. The results stemming from a trinomial lattice are
the same as those from a binomial lattice at the limit, but the lattice-build-
ing complexity is much higher for trinomials or multinomial lattices. Hence,
the examples thus far have been focusing on the binomial lattice, due to its
simplicity and applicability. It is difficult enough to create a three-time-step
trinomial lattice as shown in Figure 7H.1. Imagine having to keep track of the

FIGURE 7H.1  Trinomial Lattice
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number of nodes, bifurcations, and which branch recombines with which, in
a very large lattice. The trinomial lattice’s equations are specified below:

u=e"V 36t and d: eV 38t

_ 1
PL—6
_2
PM—3
_ 1
PH—6

~ &[__U_Z}
22 797 2
N &[__U_Z}
22 77972

See Chapter 10 for more details on applying the Multinomial Super Lat-
tice Solver software to easily and quickly solve complex trinomial lattices and
other multinomial lattices (quadranomial and pentanomial lattices) when the
underlying assets follow mean-reverting and jump-diffusion tendencies.
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Nonrecombining Lattices

Figure 71.1 illustrates a five-step nonrecombining lattice for solving an
American call option. Each node branches into two pathways that do not
meet with other branches along the way (i.e., they do not recombine). The
lattice shown here is the first lattice of the underlying asset.

738.9
495.3<332.0

Assumptions: 332.0< 3320
Asset = $100 1226 2226< 49,
Cost = $80 : 332.0

2226<"497

Maturity = 5 Years
Risk-free = 5%
Volatility = 40% 149.2

100.0<_ ]2%
332.0
222.6<< 755

100.0
100.0( Underlying Asset Lattice

100.0

44.9

AAAA

FIGURE 7.1 Nonrecombining Underlying Asset Lattice
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The lattice shown in Figure 71.2 is the valuation lattice of the American
call option, obtained using the backward-induction approach and applying
a risk-neutral probability analysis.

The problem can also be solved using a recombining lattice as shown in
Figures 71.3 and 71.4. Notice the similar values along the nonrecombining
and recombining lattices. In the recombining lattice, the amount of compu-
tation work is significantly reduced because identical values for a particular
time period are collapsed and summarized as unique nodes.

Notice the similar results obtained using the recombining and nonrecom-
bining lattices approach.

However, there is a caveat in comparing the recombining and non-
recombining lattices. For instance, the six terminal nodes on a recombining
tree are unique occurrences and a summary of the 32 terminal nodes on
the nonrecombining lattice. Therefore, it is incorrect to assume that there is

Intermediate Calculations: 658.9
) 419.2<_ 2520

Up Jump Size = 1.4918 259.6 252.0
Down Jump Size = 0.6703 55 146.5<_"5
Rlsk—Neut.r.al : 146.5<252'0
Probability = 0.4637 69.2
305< %ot

o
S
to

WA

90.1
252.0
146.5<_ 9.2,
69.2
0.0

©
e
to

w
g
w

42.2

w
S
w
N
N
o

0.0
0.0
0.0

—_
w
“w

50.8 Valuation Lattice
252.0

H
w
e &
L

o o
S
oo

42.2

—
o
[
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S

[}

5.9

o
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Underlying Asset Lattice

Assumptions: 495:3
Asset = $100 /
Cost = $80 3320
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FIGURE 71.3 Recombining Underlying Asset Lattice

Valuation Lattice

Intermediate Calculations:
Up Jump Size = 1.4918
Down Jump Size = 0.6703
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a gl probability of occurrence for the values 738, 332, 149, 67, 30, and 13.
See Figure 71.5.

In reality, the distribution of the terminal nodes looks somewhat nor-
mal, with different outcome probabilities as seen in Figure 71.6. Depending
on the input parameters, the distribution of the terminal nodes may change
slightly (higher volatility means a higher frequency of occurrence in the ex-
treme values).

738.9 (Frequency: 1)

332.0 >33240 (Frequency: 5)

222.6 222.6
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FIGURE 7.5 Frequency of Occurrence in a Recombining Lattice
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FIGURE 71.6 Probability Distribution of the End Nodes on a Recombining Lattice
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Although recombining lattices are easier to calculate and arrive at iden-
tical answers to the nonrecombining lattices, there are conditions when non-
recombining lattices are required for the analysis. These conditions include
when there are multiple sources of uncertainty or when volatility changes over

time, as in Figure 71.7.

Assumptions:
Asset = $100
Cost = $80

Maturity = 5 Years

Risk-free = 5%

Volatility = 40%

New Volatility of 45%
after 2 years

New Volatility of 50%

149.2
after 4 years

100.0

67.0

First
volatility

FIGURE 71.7 Nonrecombining Underlying Asset Lattice for a

Changing Volatility Option
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Figure 71.8 shows the valuation lattice on an American call option with
changing volatilities using the risk-neutral probability approach.

Although nonrecombining lattices are better suited for solving options
with changing volatilities, recombining lattices can also be modified to handle
this condition, thereby cutting down on analytical time and effort. The results

Calculations:

up (1) = 1.4918
down (1) = 0.6703
prob (1) = 0.4637
up (2) = 1.5683
down (2) = 0.6376
prob (2) = 0.4445
up (3) = 1.6487
down (3) = 0.6065
prob (3) = 0.4267

92.8

53.2
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FIGURE 71.8 Nonrecombining Valuation Lattice for a Changing Volatility Option
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obtained are identical no matter which approach is used. The modified re-
combining lattice below makes use of the fact that although volatility changes
three times within the five-year maturity period, volatility remains constant
within particular time periods. For instance, the 40 percent volatility applies
from time O to time 2, and the 45 percent volatility holds for time 2 to time
4. Within these time periods, volatility remains constant; hence, the lattice
bifurcations are recombining. The entire lattice analysis in Figure 71.9 can

Assumptions:
Asset = $100
Cost = $80

Maturity = 5 Years

Risk-free = 5%

Volatility = 40%

New Volatility of 45%
after 2 years

New Volatility of 50%
after 4 years

Underlying Asset Lattice 222.6 22:2.6

\
;/
i
!

149.2 !
100.0 00.0 10:0.0\ 60.7

67.

avi

| a/
)\
I

Third
volatility

First Second
volatility volatility

Y

FIGURE 71.9 Solving the Underlying Asset Lattice Using
Multiple Recombining Lattices



Nonrecombining Lattices 251

be segregated into three stages of recombining lattices. At the end of a con-
stant volatility period, each resulting node becomes the starting point of a
new recombining lattice.

Figure 71.10 is the modified recombining valuation lattice approach for
the changing volatility option analysis. Notice that the resulting option
value of $53.2 is identical to the result obtained using the nonrecombining
lattice (Figure 71.8).

Calculations:

up (1) =1.4918
down (1) = 0.6703
prob (1) = 0.4637
up (2) = 1.5683
down (2) = 0.6376
prob (2) = 0.4445
up (3) = 1.6487
down (3) = 0.6065
prob (3) = 0.4267
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FIGURE 71.10  Solving the Valuation Lattice Using Multiple Recombining Lattices
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To compute the probability of occurrence for a specific node, two sim-
ple methods can be used: Pascal’s triangle and the binomial probability dis-
tribution. First, Pascal’s triangle can be used to figure out the frequency of
occurrence of a particular node for a particular number of steps. Figure 71.11
illustrates Pascal’s triangle corresponding to a five-step lattice. Compare the
results (1, 5, 10, 10, 5, and 1) with the histogram in Figure 71.6.

Another approach is the use of the binomial probability mass function
or simply

Plx)=— " p¥(1—p)r

x!(n—x)!

P(x) is the probability that the number of x events will occur, given the
total number of trials 7 with a specified probability of success p. For instance,
if we toss a fair coin four times, the probability that exactly three heads will
occur is

!
P(x=3)= Lo.sm ~0.5%3=25%
31(4 - 3)!

Similarly, think of the binomial lattice as a continuous series of coin
tosses. This means that by using the five-step lattice illustrated in Figure 71.11,
we can compute the probability of occurrence of say the second node from
the top by

|
Px=1= 5! 0.5'1-0.5°"1=15.63%
15— 1)!

The result is identical to the second node’s frequency of 5 divided by 32
or the sum of all frequencies (5/32 is 15.63 percent).

1331
14641

1 5101051
FIGURE 71.11 Pascal’s Triangle
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That is, we set 7z = 5 for the fifth step on the lattice, and x = 1 for the sec-
ond node from the top. Note that the first node on the top is x = 0, because
the binomial distribution is a zero-based distribution. That is, say we toss a
fair coin once, we have n = 1. Then, we have two outcomes, heads or tails.
If we define heads as success, then the two outcomes are such that x = 0 and
x = 1, or no heads (means tails appears) or one head (means tails does not
appear). This means that Figure 71.11’s fifth step values of 1, 5, 10, 10, 5,
and 1 have the following x values: 0, 1, 2, 3, 4, and 5.

As a final illustration, for a four-step lattice, the following frequencies
appear: 1,4, 6, 4, and 1. It means that the second node with a frequency of
4 has a probability of 4 divided by 16 (sum of all frequencies) or 25 percent.
Using the binomial probability mass function, the probability of the second
node with a frequency of 4 is

!
P(x=1= L'o.sl(l —0.5*1=25%

14-1






Additional Issues in
Real Options

INTRODUCTION

This chapter deals with additional issues in real options. These include the
optimal timing of projects, stochastic optimization of options, barrier-type
exit and abandonment options, switching options, and multiple compound
options. The problems of applying decision trees to real options analysis are
also discussed, explaining why decision trees by themselves are problematic
when trying to apply and solve real options. The technical appendixes at the
end of the chapter detail the different approaches to stochastic optimization
as well as present details of multiple exotic-options formulae.

PROJECT RANKING, VALUATION,
AND SELECTION

One of the key uses of real options analysis is project ranking and selection,
as shown in Figure 8.1. For example, using a traditional net present value
metric, management would prioritize the initiatives A-D-B-C, from the most
preferred to least. However, considering the strategic management flexibility
inherent in each of the initiatives and quantified through real options analy-
sis, the initiative prioritization would now become A-D-C-B. If real options
value is not included, the selection criteria may lead to the wrong initiative
selection and conclusions.

For instance, suppose that Initiative B is to develop a certain automobile
model, while Initiative C is to develop the similar model but with an option
for converting it into a gas-electric hybrid. Obviously, the latter costs more
than the former. Hence, the NPV for Initiative C is less than that for Initiative
B. Therefore, choosing the project that has a higher NPV today is shortsighted.
If the option value is included, Initiative C is chosen, the optimal decision,

255
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Real Options: A New Way to Look at Project Rankings

Project Value
A
Real Options
Traditional Valuation
First
Accepted New Hurdle Rate
Second
First - - i Accepted
X Ir Corporate Hurdle Rate
Accepted Accepted Accepted Accepted
Rejected
Tjhird Rejected Second
Fourth
P Project List
Initiative A Initiative B Initiative C Initiative D

Captures option value and changes project priorities (from A-D-B-C to A-D-C-B), which avoids choosing the
wrong projects. Provides optimal trigger values and timing for when execution is optimal translated back to
market price or market share. Borderline negative NPV projects have in reality significant intrinsic option
value. Simulation provides an added layer of confidence in the results.

FIGURE 8.1 Project Selection and Prioritization

because given today’s uncertain technological environment, hybrid cars may
become extremely valuable in the future.

DECISION TREES

Figure 8.2 shows an example of a decision tree. One major misunderstand-
ing that analysts tend to have about real options is that they can be solved
using decision trees alone. This is untrue. Instead, decision trees are a great
way of depicting strategic pathways that a firm can take, showing graphically
a decision road map of management’s strategic initiatives and opportunities
over time. However, to solve a real options problem, it is better to combine
decision tree analytics with real option analytics, and not to replace it com-
pletely with decision trees. When used in framing real options, these trees
should be more appropriately called strategy trees (used to define optimal
strategic pathways) as seen in Chapter 11’s cases.

Models used to solve decision tree problems range from a simple expected
value to more sophisticated Bayesian probability updating approaches. Nei-
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ther of these approaches is applicable when trying to solve a real options prob-
lem. A decision tree is not the optimal stand-alone methodology when trying
to solve real options problems because subjective probabilities are required,
as are different discount rates at each node. The difficulties and errors in fore-
casting the relevant discount rates and probabilities of occurrence are com-
pounded over time, and the resulting calculated values are oftentimes in error.
In addition, as shown in Chapter 7, binomial lattices are a much better way
to solve real options problems, and because these lattices can also ultimately
be converted into decision trees, they are far superior to using decision trees as
a stand-alone application for real options. Nonetheless, there is a common
ground between decision trees and real options analytics, as seen in Chapter
11’s case studies.

Figure 8.2 shows a decision tree but without any valuation performed
on it. On each node of the tree, certain projects or initiatives can be attached.
The values of these nodes can be determined separately using binomial lattices,
closed-form solutions, or any of the other number of ways used to solve real
options problems.

Binomial Decision Tree: Strategic Decision Road Map

Asian market

e-learning

e-procurement

No e-I

arning

No e-progurement .@. Quantification of risk and volatility

Trigger values at each decision

Optimal timing to execute

Timel Timell Timelll TimelV Time V

Steps: Identify strategic downstream opportunities, collect historical data and management assumptions, generate a path-dependent strategic
road map, create revenue and cost estimates for each path, value all strategies along different paths, obtain the optimal pathway and provide
recommendations.

Notice that at each node, we can calculate the optimal trigger values, acting like traffic lights, indicating under which certain conditions execution
or waiting is optimal. The optimal timing can also be calculated at each time period. Finally, the uncertainty in cash flows and strategic option

value can also be quantified at certain t hes through si

Tati 1

FIGURE 8.2 Decision Tree Analysis
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Figure 8.2’s hypothetical e-business strategy starts with e-procurement
through globalization of an International Internet Coalition (IIC). The deci-
sion tree simply shows that there are multiple paths that can lead to this IIC
end state. However, at each intermediate state, there is path-dependence. For
instance, the firm cannot enter the Asian market without first having the cor-
rect infrastructure for setting up e-learning and e-procurement capabilities.
The success of the former depends on the success of the latter, which is noth-
ing but a sequential compound option. At each intermediate decision node,
there are also abandonment options. In addition, simulation analysis, critical
trigger values, and optimal timing can be applied and quantified along each
decision node in a real options framework but cannot be done using a simple
decision tree analysis. However, presenting strategies in a decision tree pro-
vides key insights to management as to what projects are available for execu-
tion, and under what conditions.

One of the fatal errors analysts tend to run into includes creating a deci-
sion tree and calculating the expected value using risk-neutral probabilities,
akin to the risk-neutral probability used in Chapter 7. This is incorrect because
risk-neutral probabilities are calculated based on a constant volatility. The
risk structures of nodes on a decision tree (for instance, e-learning versus a
dot.corp strategy have very different risks and volatilities). In addition, for
risk-neutral probabilities, a Martingale process is required. That is, in a bi-
nomial lattice, each node has two bifurcations, an up and a down. The up
and down jump sizes are identical in magnitude for a recombining lattice. This
has to hold before risk-neutral probabilities are valid. Clearly the return mag-
nitudes of different events along the decision tree are different, and risk-
neutralization does not work here. Because risk-neutral probabilities cannot
be used, the risk-free rate therefore cannot be used here for discounting the
cash flows. Also, because risks are different at each strategy node, the market
risk-adjusted discount rate, such as a WACC, should also be different at every
node. A correct single discount rate is difficult enough to calculate, let alone
multiple discount rates on a complex tree, and the errors tend to compound
over time, by the time the NPV of the strategy is calculated.

In addition, chance nodes are usually added in decision tree analysis, indi-
cating that a certain event may occur given a specific probability. For instance,
chance nodes may indicate a 30 percent chance of a great economy, a 45 per-
cent chance of a nominal one, and a 25 percent chance of a downturn. Then
events and payoffs are associated with these chances. Back-calculating these
nodes using risk-neutral probabilities will be incorrect because these are chance
nodes, not strategic options. Because these three events are complementary—
that is, their respective probabilities add up to 100 percent—one of these
events must occur, and given enough trials, all of these events must occur at
one time or another. Real options analysis stipulates that one does not know
what will occur, but only what the strategic alternatives are if a certain event
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occurs. If chance nodes are required in an analysis, the discounted cash flow
model can accommodate them to calculate an expected value, which could
then be simulated based on the probability and distributional assumptions.
These simulated values can then be run in a real options modeling environ-
ment. The results can be shown on a strategy tree looking similar to a deci-
sion tree as depicted in Chapter 11. However, strategic decision pathways
should be shown in the strategy tree environment, and each strategy node or
combinations of strategy nodes can be evaluated in the context of real op-
tions analysis as described throughout this book. Then the results can be dis-
played in the strategy tree.

In summary, decision tree analysis alone is incomplete as a stand-alone
analysis in complex situations. Both methodologies discussed approach the
same problem from different perspectives. However, a common ground could
be reached. Taking the advantages of both approaches and melding them into
an overall valuation strategy, decision trees should be used to frame the prob-
lem, real options analytics should be used to solve any existing strategic op-
tionalities (either by pruning the decision tree into subtrees or solving the
entire strategy tree at once), and the results should be presented back on a de-
cision tree. These so-called option strategy trees are useful for determining
the optimal decision paths the firm should take (see Chapter 11 for sample
applications).

EXIT AND ABANDONMENT OPTIONS

Exit options are abundant in the real business world where projects can be
scrapped and salvaged resources can then be redeployed elsewhere. However,
certain projects may not be that easily abandoned at certain times because of
project stickiness and business psychology, or the fact that management can be
stubborn and reluctant to kill a project due to personal reasons.

Figure 8.3 shows a down and out barrier abandonment option. This type
of option means that a project will not be terminated immediately once it
falls out of profitability. Instead, management sets a critical barrier assump-
tion, and should the project’s profitability level fall below this barrier, the
project will be abandoned. The barrier may be set after accounting for project
stickiness and any other operational issues. The analysis can be solved using
the Super Lattice Solver software on the enclosed CD-ROM. In addition,
basic barrier options can be solved in a binomial lattice by adding in [FFAND/
OR statements nested with the regular MAX functions in Excel. Chapter 10
has several case examples using barrier-type options. That is, the value of an
option at a particular node comes into-the-money or out-of-the-money only
if the underlying asset value broaches a barrier.
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Exit Option

Project Value

Revenue or Metric Evolution Structure

Execution
Management Set

W Critical Barrier

» Time

At every phase, management has the option to abandon and exit. The
resources saved can then be redeployed to other initiatives. As all resources
are deployed and diversified over time, this exit option provides significant
intrinsic value to management by hedging the project’s risks over time.

FIGURE 8.3 Exit Option with a Barrier

GCOMPOUND OPTIONS

In some cases, there exist complex compound options, where the execution
of one project provides downstream opportunities. For instance, in Figure 8.4,
we see that the infrastructure in place provides a compound option compris-
ing a series of three future phases. Notice that Phase III cannot proceed
without the completion and execution of Phase II, which itself cannot pro-
ceed without the completion of Phase I. In some cases, these phases in the fu-
ture can be a combination of different types of options. For example, Phase II
options are simply an expansion of Phase I projects, while Phase III projects
are only executed if some preset barriers in Phase II are achieved. The Mul-
tiple Asset Super Lattice software in the enclosed CD-ROM provides exam-
ples of a multiphased sequential compound option as well as a multiple-phase
option with different costs, expansion, contraction, and abandonment op-
tions at each phase. The cases in Chapters 10 and 11 illustrate how even
more complex compound options can be solved easily using the software.

TIMING OPTIONS

Figure 8.5 shows the payoff profile on an option. The static straight line in-
dicates the strategic options value of a project with respect to changes in the
underlying variable, the revenues generated by the project assuming no volatil-
ity in the cash flows. This is in essence the NPV of the project at termination.
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Compound Options
P p Future
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Execution of an earlier Phase option creates an additional option in the future. This stepwise and path-dependent
series of options can be valued using compound options. The value of executing a Phase is not limited to the net
revenues generated in that Phase but also the creation of strategic Phase opportunities in the future.

FIGURE 8.4 Multiple-Phased Complex Compound Option

Strategic Project Value $

A Value of a Timing Option

Decision: Invest Later
As long as the value of waiting to invest (A) is higher
than the value of investing immediately (B), you choose
to defer your investment decision. When the situation
reverses, you choose to invest immediately.

Values of waiting or
executing immediately
are identical.

Option value, that is, } Flexibility
N / value
value of waiting
to invest NPV Revenues
Y N

>
Value at time t ~ Optimal revenue trigger value
to launch the project

FIGURE 8.5 Timing Option
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The curved line above the static payoff line is the strategic options value,
assuming there are risks and cash flows may be volatile. Hence, with uncer-
tainty, cash flows can be higher than expected, and with time before expi-
ration, the project is actually worth more than its NPV suggests.

Briefly, a timing option provides the holder the option to defer making
an investment decision until a later time without much restriction. That is,
competitive or market effects (market share erosion, first to market, strate-
gic positioning, and the like) have negligible effect on the value of the project.
Assuming that this holds true, then shifting a project for execution in the fu-
ture only depends on two factors: the rate of growth of the asset over time and
the discount rate or rate of erosion of the time value of money. Of course,
this is the simplest case. In reality, optimal timing and trigger values can be
obtained by changing the volatility (risk) and dividend rate (cost of waiting
and opportunity cost)—these are seen in several cases in Chapter 10.

SOLVING TIMING OPTIONS CALCULATED
USING STOCHASTIC OPTIMIZATION

Optimally timing an option execution is a tricky thing because if there are
highly risky projects with significant amounts of uncertainty, waiting is some-
times preferred to executing immediately. However, certain projects have an in-
definite economic life and during this infinite economic life, certain real
options exist. Hence, for an infinite life real option with high volatility, does
this mean you wait forever and never do it? In addition, many other factors
come into play with analyzing an optimal trigger value and optimal timing on
a real option as shown in Figure 8.6. In certain cases, a Game Theory frame-
work incorporating dynamic games competitors may play can be incorporated
into the analysis.

To solve the timing option, start by assuming that the value of an under-
lying asset’s process X = (X,) follows a Geometric Brownian Motion—that
is, dX,= aX,dt + 0X,dZ,. Then we define the value of a call option to be
®(X) = Emax[(X;—I)e T, 0], where I is the initial capital investment out-
lay, X is the time value of the underlying asset at the terminal time T, and
p is the discount rate.

The optimal investment strategy is to maximize the value of the option
with respect to time T given the underlying stochastic investment process X —
in other words, we want to find ®* (X ) = max;Emax[(X;—I)e *T, 0].

First, consider the near-zero volatility case, where there is negligible un-
certainty. Next, we require a drift rate, usually measured as the growth rate
in the asset value, and defined as a. We will further assume that p > «, that
is, the drift or growth rate of the underlying asset value does not exceed the
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Stochastic Optimization: Waiting versus Executing

Effects of Waiting Implementation Cost Effects of Going
Competition\ Cost Reduction Effects
Defray cost (+) \ Revenue enhancement (+)

Other opportunities (+) Cost reduction (+)
Loss revenues (-) Strategic options value (+)
Loss cost reduction (-) Strategic competitiveness (+)
Loss of market leadership (-) / \ High cost outlay (-)
Technological f Strategic
Uncertainty  povonue options

Enhancement

An optimal tool to use when we have two competing forces for waiting versus not waiting and we need to
optimize the time to implementation, to calculate the optimal trigger value for implementation and to model
different uncertainties. The analysis will provide the optimal trigger values (financial and non-financial
metrics) and optimal timing for each decision node, to determine when and under what optimal conditions
management should execute a strategic option.

FIGURE 8.6 Stochastic Optimization

discount rate. Otherwise, the process keeps increasing at a much higher rate
than can be discounted, the terminal value of the asset becomes infinite, and
it is never optimal to exercise the option. Because we have defined « as the
growth rate on the underlying investment process, it becomes the growth
rate in the deterministic case. Now the foregoing problem simplifies to the
condition where ®* (X ') = max; max[( X e®” — I)e~*", 0]. That is, the under-
lying asset X, at time zero grows at this growth rate « such that at time T,
the value of the continuously compounded asset value becomes X,¢%”. In ad-
dition, due to the time value of money, the net present value is discounted at
a continuous rate of ¢ 7. Here we see that delaying the execution of an option
creates the marginal benefit of the compounding growth of the asset value
over time, while the marginal cost is the time value of money. The optimal tim-
ing can then be derived to obtain the equilibrium execution time where the
net present value is maximized.

The optimal value of the option can be simply derived through the dif-
ferential equation of the net present value with respect to time. Starting with
®(X) = max max[(X,e*T —I)e *7T, 0], we obtain:

do (X)

T =(a—p)Xpe® PT + ple=?T =0
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for the maximization process, yielding:

(p— @)Xye@PT = ple~eT
eaT

_ax P
(p a)Xoe,,T T ot

aT + In(p —a)X, = In(pl)

The optimal time to execution is therefore

_1 pl
= ln[(P—a)Xo]

Table 8.1 illustrates this example, where if the asset value at time zero is
equivalent to the implementation cost $100, while the discount rate is assumed
to be 25 percent and the corresponding risk-free rate is 5.5 percent, the cal-
culated optimal time to execution is 4.52 years, using

1 (.25)($100)
T 0.055 n[(.zs—.oss)($100)

T ] = 4.52 years

TABLE 8.1 The Optimal Value of the Option

Assumptions:

Asset Value at Time 0 (X;) $100
Fixed Implementation Cost I $100
Discount Rate 25%
Growth Rate of Underlying Asset 5.5%
Calculated Optimal Time to Execution 4.52

Time NPV

1.00 $4.40

2.00 7.05

3.00 8.47

4.00 9.05

4.52 9.12 This is the maximum NPV value
5.00 9.07

6.00 8.72

7.00 8.16

8.00 7.48
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Notice that the period 4.52 years provides the maximum NPV. Hence, this
maximum NPV of $9.12 is the option value of waiting, as compared to
$100 — $100 = $0 NPV if the project is executed immediately.

Finally, to avoid any negative or undefined values of the optimal timing,
we can simply redefine the optimal timing to equal

1 pl
T* =Max|—In[——— ;0
Pl
Using this optimal timing value of

_1 pl
T=7n LP‘“)XO]

a very interesting result can be obtained. Specifically, rearranging this equa-
tion yields

eat — —pI_
(p—a)X
and we obtain the following:
Xoe®t p
I (p— a)

which is the optimal trigger value of the project. The left-hand-side equation
is termed the profitability index, that is, the future value of the underlying
asset divided by the implementation cost. If the profitability index exceeds
1.0, this implies that the NPV is positive, because the value of the asset exceeds
the implementation cost. An index less than 1.0 implies that the NPV is neg-
ative. See Table 8.2. Hence, using this profitability index is akin to making
decisions using the NPV analysis.

Table 8.3 shows the optimal timing to execute an option given the re-
spective growth and discount rates. Notice that as discount rates increase,
holding the growth rate constant, it is more optimal to execute the option
earlier. This is because the time value of money and opportunity cost losses
in revenues surpass the growth rate in asset value over longer periods of time.
In contrast, holding the discount rate constant and increasing the growth
rate, it is clear that waiting is more optimal than immediate execution be-
cause the growth rate in asset value appreciation far surpasses the discount
rate’s opportunity cost of lost revenues. For example, assuming a 10 percent
discount rate and a 1 percent growth rate, if a project’s asset value exceeds
the implementation cost by a ratio of 1.111, or if the net profit exceeds the
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TABLE 8.2 Profitability Indexes for Different Growth and Discount Rates

Growth Rates

1.00% 2.00% 3.00% 4.00% 5.00%

10% 1.111 1.250 1.429 1.667 2.000

8 15 1.071 1.154 1.250 1.364 1.500
& 20 1.053 1.111 1.176 1.250 1.333
g 25 1.042 1.087 1.136 1.190 1.250
S 30 1.034 1.071 1.111 1.154 1.200
a 35 1.029 1.061 1.094 1.129 1.167
40 1.026 1.053 1.081 1.111 1.143

TABLE 8.3 Optimal Timing for Different Growth and Discount Rates

Growth Rates

1.00% 2.00% 3.00% 4.00% 5.00%
10% 10.54 11.16 11.89 12.77 13.86
15 6.90 7.16 7.44 7.75 8.11
g 20 5.13 5.27 5.42 5.58 5.75
~ 25 4.08 4.17 4.26 4.36 4.46
§ 30 3.39 3.45 3.51 3.58 3.65
§ 35 2.90 2.94 2.99 3.03 3.08
A 40 2.53 2.56 2.60 2.63 2.67
Investment Cost $100
Asset Value $100

implementation cost by 11.1 percent, it is optimal to execute the project im-
mediately; otherwise, it is more optimal to wait.

Tables 8.2 and 8.3 assume negligible uncertainty evolving through time.
However, in the uncertain or stochastic case when the growth rate of the
underlying asset value is uncertain—that is, « fluctuates at the rate of o
(volatility)—optimal timing can no longer be ascertained. Simulation is pre-
ferred in this case. However, the optimal trigger value can still be determined.!
The optimal trigger value measured in terms of a profitability index value is
now as follows:
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TABLE 8.4 Profitability Indexes for Different Growth versus Discount Rates

Growth Rates

1.00% 2.00% 3.00% 4.00% 5.00%
10% 1.333 1.451 1.616 1.848 2.184
2 15 1.250 1.315 1.397 1.500 1.629
§ 20 1.206 1.250 1.303 1.367 1.442
£ 25 1.179 1.211 1.250 1.295 1.347
§ 30 1.160 1.186 1.216 1.250 1.289
é’ 35 1.145 1.167 1.191 1.219 1.250
40 1.134 1.152 1.173 1.196 1.222
Volatility 10%

Table 8.4 illustrates the optimal trigger values with a stochastic 10 per-
cent volatility on growth rates. Notice that the corresponding trigger values
measured in terms of profitability indexes are higher for stochastic growth
rates than for the deterministic growth rates. This is highly intuitive because
the higher the level of uncertainty in the potential future of the underlying
asset, the better off it is to wait before executing.

SWITCHING OPTIONS
In the ability to switch from technology 1 to technology 2, the option value is
2 2
ln(&i)ﬂi m( 5 >_TL
S,d (1+X)S; 2 - 85,® (1+X)S, 2
oVT oV'T

In 527 _T;'z
-5, X <(1+X)Sl> 2

where X is the proportional cost with respect to the current technology 1’s
asset value S;. Hence, the optimal behavior is such that if the new technology’s
asset value S, exceeds the value of the current technology S; plus any associ-
ated switching costs S; X, then it is optimal to switch.

Obviously, if multiple switching options are available, the problem be-
comes more complicated. Recall from the chooser option example in Chap-
ter 7 that the value of the chooser option is not a simple sum of the individual
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options to expand, contract, and abandon. This is due to the mutually ex-
clusive and path-dependent nature of these options, where the firm cannot
both expand and abandon its business on the same node at the same time, or
both expand and contract on the same node at the same time, etc. Valuing
these options individually and then adding them together implies that each
option is performed independent of one another and that two option execu-
tions may occupy the same space. Hence, to obtain the correct results, any
crossovers where two options interact in the same space have to be accounted
for. The same rule applies here. Thus, when an option exists that allows the
switching from technology 1 to technology 2 or 3, the total value of the
option is not simply the option to go from 1 to 2 plus the option to go from
1 to 3.

Tables 8.5 through 8.9 illustrate the relationships between the value of
a switching option from an old technology to a new technology, and its cor-
responding input parameters. For example, in Table 8.5, where the present
value of both technologies is currently on par with each other and the volatil-
ity is very close to 0 percent, with this negligible uncertainty, the value of the
option is close to $0, similar to the static net present value of $0 because there
is no point in being able to switch technology if the value of both technolo-
gies is identical. In contrast, when volatility increases slightly in the second
technology, the value of being able to switch to this second technology in-
creases. The rest of the examples are fairly self-explanatory.

TABLE 8.3 The Higher the Volatility of the New Technology, the Greater the
Value of the Ability to Switch Technology

PV First Asset 100.00 100.00 100.00 100.00 100.00 100.00
PV Second Asset 100.00 100.00 100.00 100.00 100.00 100.00
First Asset

Volatility 0% 1% 1% 1% 1% 1%
Second Asset

Volatility 0% 1% 2% 3% 4% 5%
Correlation

between Assets 0.00 0.00 0.00 0.00 0.00 0.00
Cost Multiplier 0.00 0.00 0.00 0.00 0.00 0.00
Time to Expiration 1.00 1.00 1.00 1.00 1.00 1.00
Risk-Free Rate 0% 0% 0% 0% 0% 0%
Portfolio Volatility 0.00 0.01 0.02 0.03 0.04 0.05
Switching

Option Value 0.01 0.56 0.89 1.26 1.64 2.03

Static NPV 0.00 0.00 0.00 0.00 0.00 0.00
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TABLE 8.6 The Higher the Value of the Original Technology, the Lower the
Value of the Ability to Switch Technology
PV First Asset 100.00 110.00  120.00  130.00  140.00  150.00
PV Second Asset 100.00  100.00  100.00  100.00  100.00  100.00
First Asset

Volatility 10% 10% 10% 10% 10% 10%
Second Asset

Volatility 10% 10% 10% 10% 10% 10%
Correlation

between Assets 0.00 0.00 0.00 0.00 0.00 0.00
Cost Multiplier 0.00 0.00 0.00 0.00 0.00 0.00
Time to Expiration 1.00 1.00 1.00 1.00 1.00 1.00
Risk-Free Rate 0% 0% 0% 0% 0% 0%
Portfolio Volatility 0.14 0.14 0.14 0.14 0.14 0.14
Switching

Option Value 5.64 2.21 0.72 0.20 0.05 0.01
Static NPV 0.00 -10.00 -20.00 -30.00 —-40.00 -50.00

TABLE 8.7 The Higher the Value of the New Technology, the Higher the Value of
the Ability to Switch Technology

PV First Asset
PV Second Asset
First Asset
Volatility
Second Asset
Volatility
Correlation
between Assets
Cost Multiplier
Time to Expiration
Risk-Free Rate
Portfolio Volatility
Switching
Option Value
Static NPV

100.00
100.00

10%

10%

0.00
0.00
1.00
0%

0.14

5.64
0.00

100.00
110.00

10%

10%

0.00
0.00
1.00
0%

0.14

12.21
10.00

100.00
120.00

10%

10%

0.00
0.00
1.00
0%

0.14

20.72
20.00

100.00
130.00

10%

10%

0.00
0.00
1.00
0%

0.14

30.20
30.00

100.00
140.00

10%

10%

0.00
0.00
1.00
0%

0.14

40.05
40.00

100.00
150.00

10%

10%

0.00
0.00
1.00
0%

0.14

50.01
50.00
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TABLE 8.8 The Higher the Switching Cost, the Lower the Value of the Ability to
Switch Technology

PV First Asset 100.00 100.00 100.00 100.00 100.00 100.00
PV Second Asset 100.00 100.00 100.00 100.00 100.00 100.00
First Asset

Volatility 10% 10% 10% 10% 10% 10%
Second Asset

Volatility 10% 10% 10% 10% 10% 10%
Correlation

between Assets 0.00 0.00 0.00 0.00 0.00 0.00
Cost Multiplier 0.00 0.10 0.20 0.30 0.40 0.50
Time to Expiration 1.00 1.00 1.00 1.00 1.00 1.00
Risk-Free Rate 0% 0% 0% 0% 0% 0%
Portfolio Volatility 0.14 0.14 0.14 0.14 0.14 0.14
Switching

Option Value 5.64 2.21 0.72 0.20 0.05 0.01
Static NPV 0.00 -10.00 -20.00 -30.00 -40.00 -50.00

TABLE 8.9 The Longer the Ability to Switch, the Higher the Value of the Ability
to Switch Technology

PV First Asset 100.00 100.00 100.00 100.00 100.00 100.00
PV Second Asset 100.00 100.00 100.00 100.00 100.00 100.00
First Asset

Volatility 10% 10% 10% 10% 10% 10%
Second Asset

Volatility 10% 10% 10% 10% 10% 10%
Correlation

between Assets 0.00 0.00 0.00 0.00 0.00 0.00
Cost Multiplier 0.00 0.00 0.00 0.00 0.00 0.00
Time to Expiration 1.00 2.00 3.00 4.00 5.00 6.00
Risk-Free Rate 0% 0% 0% 0% 0% 0%
Portfolio Volatility 0.14 0.14 0.14 0.14 0.14 0.14
Switching

Option Value 5.64 7.97 9.75 11.25 12.56 13.75

Static NPV 0.00 0.00 0.00 0.00 0.00 0.00
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SUMMARY

Multiple other real options problems requiring more advanced techniques are
required in certain circumstances. These models include the applications of
stochastic optimization as well as other exotic types of options. In addition,
as discussed, decision trees are insufficient when trying to solve real options
problems because subjective probabilities are required as well as different dis-
count rates at each node. The difficulties in forecasting the relevant discount
rates and probabilities of occurrence are compounded over time, and the re-
sulting values are oftentimes in error. However, decision trees by themselves
are great as a depiction of management’s strategic initiatives and opportu-
nities over time. Decision trees should be used in conjunction with real op-
tions analytics in more complex cases.

CHAPTER 8 QUESTIONS

1. Decision trees are considered inappropriate when used to solve real op-
tions problems. Why is this so?

2. What are some of the assumptions required for risk-neutral probabilities
to work?

3. What is stochastic optimization?

4. Assuming a 25 percent discount rate, 5.5 percent growth rate, and $100
in both present value of underlying assets and investment cost, change
each of these variables at one-unit steps. That is, holding all inputs con-
stant, change discount rate from 25 percent to 26 percent and so forth,
and explain what happens to the optimal time to execution. Repeat the
steps for growth rate, investment cost, and underlying asset value. Ex-
plain your results.
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Stochastic Processes

Throughout the book the author talks about using stochastic processes for
establishing simulation structures, risk-neutralizing revenue and cost, and
obtaining an evolution of pricing structures. A stochastic process is nothing
but a mathematically defined equation that can create a series of outcomes
over time, outcomes that are not deterministic in nature. That is, an equation
or process that does not follow any simple discernible rule such as price will
increase X percent every year or revenues will increase by this factor of X plus
Y percent. A stochastic process is by definition nondeterministic, and one
can plug numbers into a stochastic process equation and obtain different re-
sults every time. For instance, the path of a stock price is stochastic in nature,
and one cannot reliably predict the stock price path with any certainty. How-
ever, the price evolution over time is enveloped in a process that generates
these prices. The process is fixed and predetermined, but the outcomes are
not. Hence, by stochastic simulation, we create multiple pathways of prices,
obtain a statistical sampling of these simulations, and make inferences on the
potential pathways that the actual price may undertake given the nature and
parameters of the stochastic process used to generate the time-series.

Four basic stochastic processes are discussed, including the Geometric
Brownian Motion, which is the most common and prevalently used process
due to its simplicity and wide-ranging applications. The mean-reversion
process, barrier long-run process, and jump-diffusion process are also briefly
discussed.

SUMMARY MATHEMATICAL CHARACTERISTICS
OF GEOMETRIC BROWNIAN MOTIONS

Assume a process X, where X =[X,:2=0] if and only if X, is continuous,
where the starting point is X, = 0, where X is normally distributed with mean
zero and variance one or X € N(0, 1), and where each increment in time is
independent of each other previous increment and is itself normally distributed

272
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with mean zero and variance ¢, such that X,,,— X, € N(0, t). Then, the
process dX = aXdt + oXdZ follows a Geometric Brownian Motion, where
« is a drift parameter, o the volatility measure, dZ = &,V Adt such that

[4x
H[X]EN(M,U)

or X and d X are lognormally distributed. If at time zero, X(0) = 0 then the
expected value of the process X at any time ¢ is such that E[ X (#)] = X e* and
the variance of the process X at time ¢ is V[X(¢#)] = X%el"”(e"zt— 1). In the
continuous case where there is a drift parameter «, the expected value then
becomes

Xo
r— «

E UO X(t)e”dt} = fo Xoe rmatdr = (

SUMMARY MATHEMATICAL CHARACTERISTICS
OF MEAN-REVERSION PROCESSES

If a stochastic process has a long-run attractor such as a long-run production
cost or long-run steady state inflationary price level, then a mean-reversion
process is more likely. The process reverts to a long-run average such that
the expected value is E[X,] = X + (X, — X)e " and the variance is

— o?

VIX,=Xl= Zo

The special circumstance that becomes useful is that in the limiting case
when the time change becomes instantaneous or when dt— 0, we have the
condition where X, — X,_; = X(1 —e ") + X,_,(e " — 1) + &,, which is the first
order autoregressive process, and m can be tested econometrically in a unit
root context.

SUMMARY MATHEMATICAL CHARACTERISTICS
OF BARRIER LONG-RUN PROCESSES

This process is used when there are natural barriers to prices—for example,
floors or caps—or when there are physical constraints like the maximum ca-
pacity of a manufacturing plant. If barriers exist in the process, where we de-
fine X as the upper barrier and X as the lower barrier, we have a process where
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SUMMARY MATHEMATICAL CHARACTERISTICS
OF JUMP-DIFFUSION PROCESSES

Start-up ventures and research and development initiatives usually follow a
jump-diffusion process. Business operations may be status quo for a few
months or years, and then a product or initiative becomes highly successful
and takes off. An initial public offering of equities, oil price jumps, and
price of electricity are textbook examples of this. Assuming that the proba-
bility of the jumps follows a Poisson distribution, we have a process dX =
(X, t)dt + g(X, t)dq, where the functions f and g are known and where the
probability process is

do = 0 with P(X)=1—\dt
97w with P(X) = Xdt



Differential Equations
for a Deterministic Case

One of the many approaches to solving a real options problem is the use of
stochastic optimization. This optimization process can be done through a se-
ries of simulations or partial-differential equations to obtain a unique closed-
form solution, as well as other more advanced optimization algorithms (e.g.,
simulated annealing, simplex, hill climbing, genetic algorithms, evolutionary
solvers, and the like). Following is a very simplistic discussion and example
of an optimization problem with constraints. Then a partial-differential equa-
tion framework is presented. Chapter 9 briefly illustrates a more complex
optimization technique known as stochastic optimization or optimization
under uncertainty, used in portfolio optimization and capital resource allo-
cation where the input variables are stochastic and solvable only using Monte
Carlo simulation.

A simple optimization process is shown in Figure 8B.1, where we can set
up simple optimization problems in an Excel spreadsheet environment. In
addition, we can solve optimization problems mathematically, as seen in the
simple steps that follow:

m Create an objective function f(x, y) = 3xy.
m Set the constraint c(x, y) =200 — 5x — 15y.
m Set the LaGrange Multiplier €(x, y, A) = f(x, y) + Ac(x, y) = 3xy + A(200

—Sx — 135y).
m Optimize using partial-differentials:

[ ] 9a_ 200 —5x—15
FT Y

| ot _ 3y —35A
w7
o¢

B —— =3x—15A
dy
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Linear Programming - Graphical Method

Say there are two products X and Y being manufactured. Product X provides a $20 profit and product Y a $15 profit.
Product X takes 3 hours to manufacture and product Y takes 2 hours to produce. In any given week, the manufacturing
equipment can make both products but has a maximum capacity of 300 hours. In addition, based on market demand,
management has determined that they cannot sell more than 80 units of X and 100 units of Y in a given week

and prefers not to have any inventory on hand. Therefore, management has set these demand levels as

the maximum output for products X and Y, respectively. The issue now becomes what is the optimal

production levels of both X and Y such that profits would be maximized in any given week?

Based on the situation above, we can formulate a linear optimization routine where we have:

The Objective Function: Max 20X + 15Y
subject to Constraints: 38X +2Y = 300
X=80
Y =100

We can more easily visualize the constraints by plotting them out one at a time as follows:

Y =100

100

3X +2Y = 300 X =80

=
3X +2Y = 300 Y =100

100 80

The graph below shows the combination of all three constraints. The shaded area shows the feasible area, where all constraints
are simultaneously satisfied. Hence, the optimal should fall within this shaded region.

Y We can easily calculate the intersection points of the
constraints. For example, the intersection between Y = 100
and 3X + 2Y = 300 is obtained by solving the equations
simultaneously. Substituting, we get 3X + 2(100) = 300.
(X=33.34,Y=100) Solving yields X = 33.24 and Y = 100.
(X=0,Y=100)

Similarly, the intersection between X = 80 and

38X +2Y =300 can be obtained by solving the equations
simultaneously. Substituting yields 3(80) + 2Y = 300.
Solving yields Y = 30 and X = 80.

(X=80, Y=30)
The other two edges are simply intersections between the
X axes. Hence, when X =80, Y = 0 for the X = 80 line and
(X=80,Y=0) Y =100 and X = 0 for the Y = 100 line.

From linear programming theory, one of these four intersection edges or extreme values is the optimal solution. One method is
simply to substitute each of the end points into the objective function and see which solution set provides the highest profit level.

Using the objective function where Profit = 20X + 15Y and substituting each of the extreme value sets:

When X =0andY =100: Profit = $20 (0) + $15 (100) = $1,500
When 33.34and Y = 100: Profit = $20 (33.34) + $15 (100) = $2,167

When X = 80 and Y = 30: Profit = $20 (80) + $15 (30) = $2,050
When X =80 andY = 0: Profit = $20 (80) + $15 (0) = $1,600

Here, we see that when X = 33.34 and Y = 100, the profit function is maximized. We can also further verify this
by using any combinations of X and Y within the feasible (shaded) area above. For instance, X =10 and Y =10
is a combination that is feasible, but their profit outcome is only $20 (10) + $15 (10) = $350. We can calculate
infinite combinations of X and Y sets, but the optimal combination is always going to be at extreme value edges.

We can easily verify which extreme value will be the optimal solution Y
set by drawing the objective function line. If we set the objective
function to be:

20X +15Y =0 we getX=20,Y =15
20X +15Y = 1000 we get X =60,Y =80 A

B Optimal Solution

If we keep shifting the profit function upward to the right,

we will keep intersecting with the extreme value edges. The

edge that provides the highest profit function is the optimal

solution set. 15
20X + 15Y
In our example, point B is the optimal solution, which was X
verified by our calculations above, where X = 33.34 and Y = 100. 20 60 D

FIGURE 8B.1 Linear Programming
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m Solving yields x = 20, y = 6.67, A =4 and

m Optimal output f *(x, y) = 3(20)(6.67) = 400.

m A is the constraint relaxation ratio, where an increase of a budget
unit increases the optimal output by A = 4.

m Using these optimization methods, we can then set up a more com-
plex optimization process.
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Exotic Options Formulae

BLACK AND SCHOLES OPTION
MODEL—EUROPEAN VERSION

This is the famous Nobel Prize-~winning Black-Scholes model without any
dividend payments. It is the European version, where an option can only be
executed at expiration and not before. Although it is simple enough to use,
care should be taken in estimating its input variable assumptions, especially
that of volatility, which is usually difficult to estimate. However, the Black-
Scholes model is useful in generating ballpark estimates of the true real options
value, especially for more generic-type calls and puts. For more complex real
options analysis, different types of exotic options are required.

Definitions of Variahles

S present value of future cash flows ($)

X  implementation cost ($)

r risk-free rate (%)

T  time to expiration (years)

o volatility (%)

®  cumulative standard-normal distribution
Computation

In(S/X) + (r+a2/2)T o In(S/X)+ (r=0*/2)T
Call = S‘D( O'\/T ) — Xe q)( O'ﬁ )

In(S/X)+ (r—c%/2)T In(S/X)+ (r+02/2)T
sl (ST pres
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BLACK AND SCHOLES WITH DRIFT
(DIVIDEND) —EUROPEAN VERSION

This is a modification of the Black-Scholes model and assumes a fixed divi-
dend payment rate of g in percent. This can be construed as the opportunity
cost of holding the option rather than holding the underlying asset.

Definitions of Variahles

S present value of future cash flows ($)
X  implementation cost ($)
7 risk-free rate (%)
T  time to expiration (years)
o volatility (%)
®  cumulative standard-normal distribution
g  continuous dividend payout or opportunity cost (%)
Computation
. In(S/X)+ (r—q+a?2)T
Call = Se™1 @( T )
In(S/X)+ (r—q—o?/2)T
_ =T
Xe (I)< 0_\/? >
. In(S/X) + (r— q — 0%/2)T
Put = Xe CD(—[ N/ T ])
. In(S/X)+ (r—q+c?2)T
-seraf | T J

BLACK AND SCHOLES WITH FUTURE
PAYMENTS —EUROPEAN VERSION

Here, cash flow streams may be uneven over time, and we should allow for
different discount rates (risk-free rate should be used) for all future times,
perhaps allowing for the flexibility of the forward risk-free yield curve.

Definitions of Variahles

S present value of future cash flows ($)
X  implementation cost ($)
7 risk-free rate (%)
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T  time to expiration (years)
o volatility (%)
®  cumulative standard-normal distribution
g  continuous dividend payout or opportunity cost (%)
CF, cash flow at time i
Computation
§*=8—CFe ™ —CFe™—...— CF,e”""=S5— > CFe™"
i=1
. In(S*/X)+ (r—q +c%2)T
=S*pd
Call=S%¢ qj( 0'\/? )
o I(SX) + (r=g = 02)T
— Xe Q)( oV'T )
I In(S*/X)+ (r—q—a*2)T )
Put = Xe CD( —[ T
. In(S*/X)+ (r—q +c*2)T
_ Q*,—q _
seemaf-| VT J)

CHOOSER OPTIONS (BASIC CHOOSER)

This is the payoff for a simple chooser option when #; < T,, or it doesn’t
work! In addition, it is assumed that the holder has the right to choose either
a call or a put with the same strike price at time #; and with the same expi-
ration date T,. For different values of strike prices at different times, we need
a complex variable chooser option.

Definitions of Variahles

S present value of future cash flows ($)

X  implementation cost ($)

7 risk-free rate (%)

t;  time to choose between a call or put (years)
T, time to expiration (years)



Exotic Options Formulae 281

o volatility (%)
®  cumulative standard-normal distribution
g  continuous dividend payments (%)

Computation

In(S/X)+ (r —q + a?/2)T, ]

1 = —qT,
Option Value = Se CD[ VT,

—In(S/X) + (g —nT, — t,0%/2 ]
— Q,—qTs
Se~4 (I)|: U\/E

In(S/X)+ (r—q+d*2)T,
g Tz

- Xe’TZ(D[ — 0 T2i|

X Tq)[ —In(S/X) + (g — )T, — t,0%/2
e

oV i

COMPLEX CHOOSER

The holder of the option has the right to choose between a call and a put at
different times (T, and Tp) with different strike levels (X and Xp) of calls
and puts. Note that some of these equations cannot be readily solved using
Excel spreadsheets. Instead, due to the recursive methods used to solve cer-
tain bivariate distributions and critical values, the use of programming scripts
is required.

Definitions of Variahles

present value of future cash flows ($)
implementation cost ($)

risk-free rate (%)

time to expiration (years) for call (T¢) and put (T5)
volatility (%)

cumulative standard-normal distribution
cumulative bivariate-normal distribution
continuous dividend payout (%)

critical value solved recursively

intermediate variables (Z; and Z,)

N=Q D88 5% xo
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Computation

First, solve recursively for the critical I value as follows:

oo [ I0U/X )+ (r =g + 02/2)(Te — 1)
= —qllc—
0=t ‘D[ oVTo—t }
In(I/X¢c)+ (r—q+a*2)(Tc— 1)
- Xce"(Tc‘“d)[ oNTe—t —oVTt ]
— — p— (g2 —
He_qm_t@[ In(1/X,) + (g — 7 — a2/2)(Tp t)]
(o Tp_t

—In(I/Xp) + (g — 7 — o4 2)(Tp— 1)
_ —r(Tp—t) A/ _
Xpe tq)|: o /Tp_t + 0o Tp t :|

Then using the I value, calculate

In(S/I) + (r — g+ a?/2)t

d1= 0_\/2 and d2=d1—0'\/z
_In(S/X o) + (r—q+0%2)T. q

V1= U\/,ITC an
_ In(S/Xp) + (r—g+0/2)Tp

Y2 = 0'\/7-}

P1= Vt/TC and Py = \/t/TP

Option Value = Se™17cQ(d.; y15 p1) — Xce " eQ(dp; y1 — oV T¢; p1)

= Se”1Tr Q) —d 5 —y2; pa) + Xpe TH U —dy;—y, + oV Tp; py)

GCOMPOUND OPTIONS ON OPTIONS

The value of a compound option is based on the value of another option.
That is, the underlying variable for the compound option is another option.
Again, solving this model requires programming capabilities.

Definitions of Variahles

S present value of future cash flows ($)
7 risk-free rate (%)
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volatility (%)
cumulative standard-normal distribution
continuous dividend payout (%)
critical value solved recursively
cumulative bivariate-normal distribution
1 strike for the underlying ($)
, strike for the option on the option ($)
expiration date for the option on the option (years)
T, expiration for the underlying option (years)

T REE-E

Computation

First, solve for the critical value of I using

In(1/X,) + (r—q +02/2)(T, — t,) )
oV (T, — ty)

In(1/X,) + (r— g — o2/2)(T, — t,) )
oV (T, — t))

X2 = Ie_q(TZ_t1)q)<

— Xle—r(Tz—t1)q)<

Solve recursively for the value I above and then input it into

In(S/X,)+ (r—q+d%/2)T,

Il Il ! e |
= —qa13()
Call on ca Se In(S/I) + (r — g+ 0?/2)t,
In(S/X)) +(r=q+o%2)T, _ .,
—oVT
gV T2 2;
—X,e7 () In(S/T 29
/I)+ (r—qg+ oc¥/2)t
n( ) (T\/_q a/2)t — 0Vl \/ﬁ
g tl

- In(S/I)+ (r— g+ a¥2)t, ]
— X,e P —oVt,
2 [ 0'\/5 !

EXCHANGE ASSET FOR ASSET OPTION

The exchange asset for an asset option is a good application in a mergers and
acquisition situation when a firm exchanges one stock for another firm’s stock
as a means of payment.
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Definitions of Variables

present value of future cash flows ($) for Asset 1 (S;) and Asset 2 (S,)
implementation cost ($)

quantity of Asset 1 to be exchanged for quantity of Asset 2
risk-free rate (%)

time to expiration (years) for call (T¢) and put (T5)

volatility (%) of Asset 1 (o) and Asset 2 (o)

portfolio volatility after accounting for the assets’ correlation p
cumulative standard-normal distribution

continuous dividend payout (%) for Asset 1

continuous dividend payout (%) for Asset 2

0 < »

&9 q —

[

Q9
~o

Computation
Option =
In(0;5,/0,,) + (¢, — ¢, + (07 + 05 — 2p0y0,) /2)T

—q,T,
QS e \/T(U% +03 — 2poy0,)

In(Q,8:/058,) + (92 — g1 + (07 + 03 — 2p00,) 12)T
—0,8e70Td \/T(UZ] +03 — 2poy0y)

- \/T(O'Zl +03 — 2poy0,)

FIXED STRIKE LOOK-BACK OPTION

The strike price is fixed in advance, and at expiration, the call option pays out
the maximum of the difference between the highest observed price in the op-
tion’s lifetime and the strike X, and 0, that is, Call = Max[S,;.x — X, 0]. A put
at expiration pays out the maximum of the difference between the fixed strike
X and the minimum price, and 0, that is, Put = Max[X — Sy 0]

Definitions of Variables

present value of future cash flows ($)
implementation cost ($)

risk-free rate (%)

time to expiration (years)

volatility (%)

cumulative standard-normal distribution
continuous dividend payout (%)

S R
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Computation

Under the fixed strike look-back call option, when we have X > §,,,«, the
call option is

— 2
Call=Se‘qT<IJ[ In(S/X) + (r—q+0%2)T ]

oV'T
_ 2
_ Xe_nq)[ In(S/X)+(r—q+o*2)T Uﬁ]
o\V'T
i In(S/X)+ (r—q+0c%2)T
o g \2r-a) oVT
=T —| — o’ 2 r—
+ Se 2r—q) < ) b (O-Q)\/T
In(S/X)+ (r—q+0a%2)T
(r—a)T,
_+ el (I)[ T ] _

However, when X = §,,,x the call option is

Call=¢e1(S X) + SeqTq)[ In(S/Syax) + (r—q +0%/2)T }
- MAX

oV'T
In(S/Syux) + (r —q + a*/2)T
- SMAXe'Tq)[ AL o-\/T_' - Uﬁ]
[ In(S/Syux) + (r —q +0%/2)T
o) o\V'T
o2 S T
+ SeT —( ) o | 2r—q)
C 2 —q) | \ S T, VT
ln(S/SMAx) + (7 - q + UZ/Z)T
(r=q)T
-+e (I)|: O'\/T :| ]

FLOATING STRIKE LOOK-BACK OPTIONS

Floating strike look-back options give the call holder the option to buy the
underlying security at the lowest observable price and the put holder the op-
tion to sell at the highest observable price. That is, we have a Call = Max
(S — Sy, 0) and Put = Max (Syux — S, 0).
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Definitions of Variables

present value of future cash flows ($)
implementation cost ($)

time to expiration (years)

cumulative standard-normal distribution
continuous dividend payout (%)

S

X

7 risk-free rate (%)
T

o volatility (%)

d

q

Gomputation

Call = SeqT¢>[

— Sue

Put = SMAXE’T(D[

- Se‘qTCI)[

In(S/Syun) + (r—q +a?/2)T

T }

In(S/Sy) + (r —q + 0¥2)T

rT(I)|:

S ) g
2(r—q) (SMIN +2(r—q)\/?

NT —U\/ﬂ

—In(S/Syn) — (r — g +a¥2)T

- e(,q%[ ~In(S/Sy) = (r = g + 0%/2)T }

oVT

T = “ﬁ]

_ln(S/SMAx) - (7’ —q + UZ/Z)T

~T }

r In(S/Syax) +(r—q+0%/2)T \T
—2(r—q) oV'T

§ ;
_(SMAX> Y (I) _Mﬁ
g

In(S/Syax) + (r —q +a?/2)T
* e(rq)Tq)[ oV'T ]
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FORWARD START OPTIONS

Definitions of Variahles

S present value of future cash flows ($)

X  implementation cost ($)

7 risk-free rate (%)

t,  time when the forward start option begins (years)

T, time to expiration of the forward start option (years)
o volatility (%)

®  cumulative standard-normal distribution

g  continuous dividend payout (%)

Computation
In(1/a) + (r —q + a?/2)(T, — 1)
= Qp—qtip—q(Tr—1t)
Call = Se~ahe™4 <1>[ NT,— 1, ]
[ In(1/a) + (r—q + o?/2) (T, — t;)
— Cp—qtipypl—1)(Tr—1y) — OV -
Seqae (1)7 O'\/Tz_tl 7 T2 t1:|
r —In(l/a) = (r—q+o?/2)(T, — t;)
_ —qty —r)|(Ty—t; -
Put = Se” el ”<I>7 oVT,—t, +oVT, tl}
[ —In(1/a) = (r —q + a?/2)(T, — t)
— Se~1he—aTa—t)P
e dhe i o~ /7,1—‘2_ Ifl ]

where « is the multiplier constant.

Note: If the option starts at X percent out-of-the-money, a will be (1 + X).
If it starts at-the-money, a will be 1.0, and (1 — X) if in-the-money.

GENERALIZED BLACK-SCHOLES MODEL

Definitions of Variahles

present value of future cash flows ($)
implementation cost ($)

risk-free rate (%)

time to expiration (years)

volatility (%)

cumulative standard-normal distribution
carrying cost (%)

continuous dividend payout (%)

2 TES N XY
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Computation

Call = Se“’"’TCIJ(

ln(S/X) b + 02/2) T)

52
Xe"TCI>< ln(S/X) a¥2)T
In(S/X) + (b — o¥2)T D
Put=X "T<I><—[
" ¢ oV'T
- In(S/X)+ (b +a¥2)T D
_ Se(b r)T(D<_|:
o\V'T
Notes:
b=0 Futures options model
b=r—q Black-Scholes with dividend payment
b=r Simple Black-Scholes formula

b=r—r* Foreign currency options model

OPTIONS ON FUTURES

The underlying security is a forward or futures contract with initial price F.
Here, the value of F is the forward or futures contract’s initial price, replac-
ing S with F as well as calculating its present value.

Definitions of Variables

X  implementation cost ($)

F  futures single-point cash flows ($)

r risk-free rate (%)

T  time to expiration (years)

o volatility (%)

®  cumulative standard-normal distribution
g  continuous dividend payout (%)
Computation

o ( In(E/X) + (0?/2)T . { In(F/X) = (0*/2)T
Call = Fe <I>< T ) Xe cp( T )

- In(F/X) — (02/2)T - In(F/X) + (02/2)T
Put = Xe TCD(—[ T D —Fe T@(—[ T D
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SPREAD OPTION

The payoff on a spread option depends on the spread between the two futures
contracts less the implementation cost.

Definitions of Variahles

X  implementation cost ($)

7 risk-free rate (%)

T  time to expiration (years)

o volatility (%)

®  cumulative standard-normal distribution
F,  price for futures contract 1

F,  price for futures contract 2

p  correlation between the two futures contracts

Computation

First, calculate the portfolio volatility:

E, T F
— 2 + 2 _2 -2
7 \/‘T‘ [‘72 F2+X] PO LX

Then, obtain the call and put option values:

[ ( \ ]
+(0?/2)T
. TX © ln[Fz X} (02/2)
2
Call= (F, + X)| e™'T oV'T
F
1 ! ]+ 22T
o\V'T —oVT
L \ /-
_ ' -
F
—1 —(02/2)T
@ “[F2+ X] (7/2)
\/7_, + 0'\/?
Put=(F,+ X) | e o
By ln[F2+ X] (0/2)T
i F+X oV'T )|
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DISCRETE TIME SWITCH OPTIONS

The discrete time switch option holder will receive an amount equivalent to
AAt at maturity T for each time interval of At where the corresponding asset
price S;4, has exceeded strike price X. The put option provides a similar pay-
off every time S, is below the strike price.

Definitions of Variahles

present value of future cash flows ($)

implementation cost ($)

risk-free rate (%)

time to expiration (years)

volatility (%)

cumulative standard-normal distribution

carrying cost (%), usually the risk-free rate less any continuous
dividend payout rate

TEeS Y X

Computation

" In(S/X) + (b — o?/2)iAt
( Jas

— —rT
Call = Ae ;cp A
n —In(S/X) — (b — 0?/2)iAt
= —rT
Put = Ae ZZ(I)( O'\/E )At

TWO-CORRELATED-ASSETS OPTION

The payoff on an option depends on whether the other correlated option is in-
the-money. This is the continuous counterpart to a correlated quadranomial
model.

Definitions of Variahles

present value of future cash flows ($)
implementation cost ($)

risk-free rate (%)

time to expiration (years)

volatility (%)

cumulative bivariate-normal distribution function
correlation (%) between the two assets

continuous dividend payout for the first asset (%)
continuous dividend payout for the second asset (%)

D8 =Y x©

_Q QT
g
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Computation

In(S,/X,) + (r — g, — 05/2)T

0_2\/7_, + (Tzﬁ;
Call = S,e~©TQ)
ln(Sl/Xl) + (7’ - ql - 0'21/2)T
o T +po,VT; p
In(S,/X,) + (r— g, — 05/2)T ]
Uzﬁ ’
- XzeirTQ
In(S,/X,)+ (r— g, — 05/2)T
(Tlﬁ ’ p_
—In(S,/X,) — (r—q, — 03/2)T ]
Uzﬁ ’
Put = X,e7"TQ
—In(S;/X;) = (r—q, — 03/2)T
Ul\/T ’ p_
—In(S,/X,) — (r—q, — 03/2)T
0'2\/T N UZﬁ;
— S,e"2T() In(s 5 T
—In(${/X;) = (r—q; — 07/
1/ &9 91 1 B PO'z\/T; )

(Tl\/T
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Introduction to the

Real Options Valuation's
Super Lattice Software

and Risk Simulator Software

Now that you are confident with the applicability of real options and its in-
tricate mathematical constructs, it is time to move on and use the Real Op-
tions Valuation’s Super Lattice Solver (SLS) and Risk Simulator software in
the enclosed CD-ROM. As shown in Chapters 7 and 8, applying real options
is not an easy task. The use of software-based models allows the analyst to
apply a consistent, well-tested, and replicable set of models. It reduces com-
putational errors and allows the user to focus more on the process and prob-
lem at hand rather than on building potentially complex and mathematically
intractable models. This chapter starts with an introduction to the Super Lat-
tice Solver software and continues with the Risk Simulator software.

The enclosed CD-ROM has a 30-day trial version of the Super Lattice
Solver and Risk Simulator software. For professors, contact the author for
complimentary year-long licenses for you and your students for installation
in computer labs. The remainder of this book and relevant examples require
the use of these software applications. To install the Super Lattice Solver soft-
ware, insert the CD and wait for the setup program to start. If it does not start
automatically, browse the content of the CD and double-click on the
CDAutorun.exe file and follow the simple on-screen instructions. You must
be first connected to the Internet before you can download and install the lat-
est version of the software. Install the Super Lattice Solver software and then
the Risk Simulator software. When prompted, enter the following user name
and license key for a 30-day trial of the SLS software:

Name: 30 Day License License Key: 513C-27D2-DC6B-9666

295
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Another license key is required to permanently unlock and use the software,
and the license can be purchased by contacting the author.

After successfully installing the software, verify that the installation was
successful by clicking on and making sure that the following folder exists:
Start | Programs | Real Options Valuation | Real Options Super Lattice Solver.
Note that the SLS software will work on most international Windows oper-
ating systems but requires a quick change in settings by clicking on Start |
Control Panel | Regional and Language Options. Select English (United
States). This is required because the numbering convention is different in for-
eign countries (e.g., one thousand dollars and fifty cents is written as 1,000.50
in the United States versus 1.000,50 in certain European countries).

INTRODUCTION TO THE SUPER LATTIGE
SOLVER SOFTWARE

The Real Options Super Lattice Software (SLS) comprises several modules,
including the Single Super Lattice Solver (SSLS), Multiple Super Lattice
Solver (MSLS), Multinomial Lattice Solver (MNLS), SLS Excel Solution, and
SLS Functions. These modules are highly powerful and customizable bino-
mial and multinomial lattice solvers and can be used to solve many types of
options (including the three main families of options: real options, which
deals with physical and intangible assets; financial options, which deals with
financial assets and the investments of such assets; and employee stock op-
tions, which deals with financial assets provided to employees within a cor-
poration). This text illustrates some sample real options, financial options,
and employee stock options applications that users will most frequently
encounter.

m The SSLS is used primarily for solving options with a single underlying
asset using binomial lattices. Even highly complex options with a single
underlying asset can be solved using the SSLS.

m The MSLS is used for solving options with multiple underlying assets
and sequential compound options with multiple phases using binomial
lattices. Highly complex options with multiple underlying assets and
phases can be solved using the MSLS.

m The MNLS uses multinomial lattices (trinomial, quadranomial, pen-
tanomial) to solve specific options that cannot be solved using binomial
lattices.

m The SLS Excel Solution implements the SSLS and MSLS computations
within the Excel environment, allowing users to access the SSLS and
MSLS functions directly in Excel. This feature facilitates model building,
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formula and value linking and embedding, as well as running simula-
tions, and provides the user sample templates to create such models.

m The SLS Functions are additional real options and financial options
models accessible directly through Excel. This facilitates model building,
linking and embedding, and running simulations.

The SLS software is created by the author and accompanies the materi-
als presented at different training courses on real options, simulation, and
employee stock options valuation taught by Dr. Mun. While the software
and its models are based on his books, the training courses cover the real op-
tions subject matter in more depth, including the solution of sample business
cases and the framing of real options of actual cases. It is highly suggested that
the reader familiarizes him- or herself with the fundamental concepts of real
options in Chapters 6 and 7 prior to attempting an in-depth real options
analysis using this software.

Note: The first edition of Real Options Analysis: Tools and Techniques
published in 2002 shows the Real Options Analysis Toolkit software, an older
precursor to the Super Lattice Solver, also created by Dr. Johnathan Mun.
The Super Lattice Solver version 1.1 supersedes the Real Options Analysis
Toolkit by providing the following enhancements, and is introduced in this
second edition:

m All inconsistencies, computation errors, and bugs fixed and verified.

m Allowance of changing input parameters over time (customized options).

m Allowance of changing volatilities over time.

m Incorporation of Bermudan (vesting and blackout periods) and Cus-
tomized Options.

m Flexible modeling capabilities in creating or engineering your own cus-
tomized options.

m General enhancements to accuracy, precision, and analytical prowess.

As the creator of both the Super Lattice Solver and Real Options Analy-
sis Toolkit software, the author suggests that the reader focuses on using the
Super Lattice Solver as it provides many powerful enhancements and ana-
lytical flexibility over its predecessor, the older, less powerful, and less flex-
ible Real Options Analysis Toolkit software.

SINGLE SUPER LATTICE SOLVER

Figure 9.1 illustrates the SSLS module. After installing the software, the user
can access the SSLS by clicking on Start | Programs | Real Options Valuation
| Real Options Super Lattice Solver | Single Super Lattice Solver. The SSLS
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Super Lattice Solver (Real Options Valuation, Inc.)
File Help

Comment ||
Option Type Customn Yarables

¥ American Option [V European Option [~ Besmudan Option [~ Custom Option Watiable Name Value Starting Stey

Basic Inputs

PV Underingdsset(§) | RiskFresRate(® [
Implementation Cast [$] r___ Dividend Rate %] I__-_
Maturity [veas] [ vy () [
Lattice Steps ’— * &l % inputs are annualized rates.

Blackout Steps and Vesting Penods [For Custom and Bemudan Optionz);

Example: 1,210-20, 35 Add Modify Remave
Optional Teminal Node Equation (0 ptons At Espiration]: e
Call Put
Black-5 choles:

Enample: M&X[Asset-Cast, 0] Clozed-Fom Americar:

Binomial European;

r— Cuztom E quations [For Custom Options) Binorial American:

Intermediate Mode Equation [Options Before E xpiration]:

Result
Example: Max[Azset-Cost, E(E]
Intermediate Mode Equation [Duing Blackout and Yesting Periods]:
[ Create Audt Workheet
Example; (=@ Bun Llear all

Sample Commands: Asset, Max, I, And, O, 3=, <=2, <

FIGURE 9.1  Single Super Lattice Solver (SSLS)

has several sections: Option Type, Basic Inputs, Custom Equations, Custom
Variables, Benchmark, Result, and Create Audit Worksheet.

SSLS Examples

To help you get started, several simple examples are in order. A simple Eu-
ropean call option is computed in this example using SSLS. To follow along,
start this example file by selecting Start | Programs | Real Options Valuation
| Real Options Super Lattice Solver | Sample Files | Plain Vanilla Call Option
I. This example file will be loaded into the SSLS software as seen in Figure 9.2.
The starting PV Underlying Asset or starting stock price is $100, and the
Implementation Cost or strike price is $100 with a five-year maturity. The
annualized risk-free rate of return is 5 percent, and the historical, comparable,
or future expected annualized volatility is 10 percent. Click on RUN (or Alt-
R) and a 100-step binomial lattice is computed and the results indicate a value
of $23.3975 for both the European and American call options. Benchmark
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Eﬂ Super Lattice Solver
File Help

Commert |

— Option Type — Cuztom Yariable:

|¥ American Option v Ewopean Option [~ Bermudan Option [ Custarn Option Variable Name | Value Starting Ste)

Basic [nputs

P Underying &sset ($) |1 oo Risk-Free Rate (%] [5

Implementation Cost [$) |1 00 Dividend Rate (%] [g

Maturity [Years] |5 aolatility [%] 10

Lattice Steps |1 i1 * &l % inputs are annualized rates.

Blackout Steps and Yesting Periods [For Custom and Bermudan Options]):

I Add TModify Femove

Example: 1.2,10-20, 35

Optional Temminal Mode Equation [0 phons At Expiration) — Benchmark

I Call Put
Black-Scholes European:  $23.42 $1.30

Example: MAX[AssetCost, 0) Clozed-Fom Americarn: $23.42 $329
Binomial Europearn: $23.42 $1.30

(e (e =i T (e (O Bincmial Americar: $23.42  $330

Intermediate Mode Equation [Options Before Expiration]:
Result

American Option: $23.3975
European Dption: $23.3975

Exarnple; MAX[Azeet-Cost, @)
Intermediate Mode Equation [During Blackout and Yesting Periods]:

[~ Generate Audit Workhest
LClear A0 |

FIGURE 9.2 SSLS Results of a Simple European and American Call Option

Example: @@

values using Black-Scholes and Closed-Form American approximation mod-
els as well as standard plain-vanilla Binomial American and Binomial European
Call and Put Options with 1,000-step binomial lattices are also computed.
Notice that only the American and European Options are selected and the
computed results are for these simple plain-vanilla American and European
call options.

The benchmark results use both closed-form models (Black-Scholes and
Closed-Form Approximation models) and 1,000-step binomial lattices on
plain-vanilla options. You can change the steps to 1000 in the basic inputs
section to verify that the answers computed are equivalent to the benchmarks
as seen in Figure 9.3. Notice that, of course, the values computed for the
American and European options are identical to each other and identical to
the benchmark values of $23.4187, as it is never optimal to exercise a stan-
dard plain-vanilla call option early if there are no dividends. Be aware that the
higher the lattice step, the longer it takes to compute the results. It is advisable



300 SOFTWARE APPLICATIONS

E Super Lattice Solver
File Help
Comment |
— Option Type — Cuztom Yariable:
v American Option [ Ewopean Option [ Bermudan Option [ Custarm Option VariableMame | Value | Statting Step |
r— Basic Inputs
PV Underlyng Asset ($] |1 i Risk-Free Rate (%] [5
Implementation Cost [$] |1 [ii] Dividend Rate [%] [p
Maturity [Vears] |5 aolatility [%] 10
Lattice Steps I‘I 000 * Al % inputs are annualized rates.
Blackout Steps and Yesting Periods [For Custom and Bermudan Options]:
I Add TModify Femove
Example: 1.2,10-20. 35
Optional Temminal Mode Equation [0 pbons At Expiration) Benchmark
Call Put
Black-Scholes European:  $23.42 $1.30
Enample: MAX[Asset Cast, 0] Clozed-Fom Americarn: $23.42 $329
Binomial Europear: $23.42 $1.30
[ustorn Equations [or Eustom Dpticns) Binomial Americar: $2342  $330

Intermadiate Nods Equation [Dptions Before Expiration):

— Result

American Option: $23.4187
European Option: $23. 4187

Example: Max[Asset-Cost, E4E]
Intermediate Mode Equation [During Blackout and Yesting Periods):

[~ Generate Audit \Workhest

LClear 20 |

Example: @&

FIGURE 9.3 SSLS Comparing Results with Benchmarks

to start with lower lattice steps to make sure the analysis is robust and then
progressively increase lattice steps to check for results convergence. See Chap-
ter 6 on convergence criteria on lattices for more details about binomial lat-
tice convergence as to how many lattice steps are required for a robust option
valuation.

Alternatively, you can enter Terminal and Intermediate Equations for a
call option to obtain the same results. Notice that using 100 steps and cre-
ating your own Terminal Equation of Max(Asset-Cost,0) and Intermediate
Equation of Max(Asset-Cost,@@) will yield the same answer. When enter-
ing your own equations, make sure that Custom Option is first checked.

When entering your own equations, make sure that Custom Option is

first checked.
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Figure 9.4 illustrates how the analysis is done. The example file used in
this example is: Plain Vanilla Call Option I11. Notice that the value $23.3975
in Figure 9.4 agrees with the value in Figure 9.2. The Terminal Node Equa-
tion is the computation that occurs at maturity, while the Intermediate Node
Equation is the computation that occurs at all periods prior to maturity, and
is computed using backward induction. The symbol “@@” represents “keep-
ing the option open,” and is often used in the Intermediate Node Equation
when analytically representing the fact that the option is not executed but kept
open for possible future execution. Therefore, in Figure 9.4, the Intermediate
Node Equation Max(Asset-Cost,@@) represents the profit maximization de-
cision of either executing the option or leaving it open for possible future ex-
ecution. In contrast, the Terminal Node Equation of Max(Asset-Cost,0)
represents the profit maximization decision at maturity of either executing
the option if it is in-the-money, or allowing it to expire worthless if it is at-the-
money or out-of-the-money.

H Super Lattice Solver E
Fil= Help
Comment |
Optian Type Custom Variables
¥ American Option v Ewopean Option [~ Bermudan Option [ Custorn Option Variable Name | Value | Starting Step |
— Basic Inputs
PY Underlying Asset ($] [100 Risk-Free Rate (%] [5
Implementation Cost ($) [100 Dividend Rate [%] [g
Maturity [Years) 5 “Walatility [%] 10
Lattice Steps 100 =&l % inputs are annualized rates.
Blackout Steps and Yesting Periods [For Custom and Bemudan Options]):
| Add Madify Remove
Example: 1.2,10-20. 35
Optional Terminal Mode Equation [0 phons At Expiration) Benchmark
MaxAzzet-Cost,0) Call Put
Black-Scholes European:  $23.42 $1.30
Enample: MAX[&sset Cast, 0] Clozed-Fom Americarn: $23.42 $329
Binomial European: $23.42 $1.30
- CustomEuetions [For Custom Upticns) Binomial Americar: $2342  $330

Intermediate Mode Equation [Options Before Expiration):

Max[Asset-Cost, @3] Result-

American Option: $23.3975
European Option: $23.3975
Custom Option: $23.3975

Example: M&x[Azset-Cogt, @)

Intermediate Mode Equation [During Blackeout and Vesting Periods):

[~ Generate Audit \Workhest

LClear &0 I

Example: @&

FIGURE 9.4 Custom Equation Inputs
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In addition, you can create an Audit Worksheet in Excel to view a sam-
ple 10-step binomial lattice by checking the box Generate Audit Worksheet.
For instance, loading the example file Plain Vanilla Call Option I and select-
ing the box creates a worksheet as seen in Figure 9.5. Several items on this
audit worksheet are noteworthy:

® The audit worksheet generated will show the first 10 steps of the lattice,
regardless of how many you enter. That is, if you enter 1,000 steps, the
first 10 steps will be generated. If a complete lattice is required, simply
enter 10 steps in the SSLS and the full 10-step lattice will be generated in-
stead. The Intermediate Computations and Results are for the Super Lat-
tice, based on the number of lattice steps entered, and not based on the
10-step lattice generated. To obtain the Intermediate Computations for
10-step lattices, simply rerun the analysis inputting 10 as the lattice steps.
This way, the audit worksheet generated will be for a 10-step lattice, and
the results from SSLS will now be comparable (Figure 9.6).

m The worksheet only provides values as it is assumed that the user was
the one who entered in the terminal and intermediate equations, hence
there is really no need to recreate these equations in Excel again. The user
can always reload the SSLS file and view the equations or print out the
form if required (by clicking on File | Print).

The software also allows you to save or open analysis files. That is, all
the inputs in the software will be saved and can be retrieved for future use.
The results will not be saved because you may accidentally delete or change
an input and the results will no longer be valid. In addition, rerunning the
super lattice computations will only take a few seconds, and it is always ad-
visable for you to always rerun the model when opening an old analysis file.

You may also enter in Blackout Steps. These are the steps on the super lat-
tice that will have different behaviors than the terminal or intermediate steps.
For instance, you can enter 1000 as the lattice steps, and enter 0-400 as the
blackout steps, and some Blackout Equation (e.g., @@). This means that for
the first 400 steps, the option holder can only keep the option open. Other ex-
amples include entering: 1, 3, 5, 10 if these are the lattice steps where black-
out periods occur. You will have to calculate the relevant steps within the
lattice where the blackout exists. For instance, if the blackout exists in years 1
and 3 on a 10-year, 10-step lattice, then steps 1, 3 will be the blackout dates.
This blackout step feature comes in handy when analyzing options with hold-
ing periods, vesting periods, or periods where the option cannot be executed.
Employee stock options have blackout and vesting periods, and certain con-
tractual real options have periods during which the option cannot be executed
(e.g., cooling-off periods, or proof of concept periods).
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Option Valuation Audit Sheet
Assumptions Intermediate Computations
PV Asset Value ($) $100.00 Stepping Time (dt) 0.0500
Implementation Cost ($) $100.00 Up Step Size (up) 1.0226
Maturity (Years) 5.00 Down Step Size (down) 0.9779
Risk-free Rate (%) 5.00% Risk-neutral Probability 0.5504
Dividends (%) 0.00%
Volatility (%) 10.00% Results
Lattice Steps 100 Lattice Result
Option Type European
Terminal Equation MAX(Asset-Cost, 0)
Intermediate Equation @@
Intermediate Equation (Blackouts) @@
Underlying Asset Lattice
122.29
119.59 119.59]
116.94 116.94
114.36 114.36 114.36]
_I 111.83 111.83 111.83
109.36, 109.36| 109.36] 109.36]
106.94 106.94 106.94 106.94
[ 104.57, 104.57 104.57, 104.57 104.57]
102.26[ 102.26 102.26 102.26 102.26
| 100.00 _I 100.00 100.00 100.00 100.00 100.00]
97.79 97.79] 97.79 97.79] 97.79
| 95.63] 95.63] 95.63] 95.63] 95.63]
93.51 93.51 93.51 93.51
91.44 91.44] 91.44 91.44]
89.42 89.42 89.42
87.44] 87.44 87.44]
85.51 85.51
83.62 83.62]
81.77
79.96]
Option Valuation Lattice
42.81
40.35) _| 39.96]
37.97] 37.58
35.66 35.27] 34.87|
33.43 33.04/ 32.64
3127 30.88 3049 30.09]
29.18] 28.80; 28.41 28.02]
27.18] 26.79 26.41] 26.02 25.64]
25.25 24.87| 24.49 24.11 23.73
[ 23.40 23.03 22.65| 22.28 21.90 21.52]
21.26] 20.90] _| 20.53] 20.16] 19.79
| 19.22 18.86 18.50 18.14 17.77]
17.28 16.93 16.58 16.22
1545 15.10) 14.76| 14.41]
13.71 13.38 13.05
12.09] 11.77) 11.45]
| 10.58| 10.27)
| 9.19 8.89]
7.91
6.74

FIGURE 9.5 SSLS-Generated Audit Worksheet

If equations are entered into the Terminal Equation box and American,
European, or Bermudan Options are chosen, the terminal equation you en-
tered will be the one used in the super lattice for the terminal nodes. How-
ever, for the intermediate nodes, the American option assumes the same
terminal equation plus the ability to keep the option open; the European op-
tion assumes that the option can only be kept open and not executed; while
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D Super Lattice Solver E
Fil= Help

Comment |
Option Type Custom Variables
¥ American Option [v Euwopean Option [~ Bermudan Option [ Custorn Opbon Mariable Name | Value Starting Ste

— Basic Inputs
P Underying &sset ($) !1 [ii] Risk-Free Rate (%] [5
Implementation Cost [$] i1 oo Dividend Rate [%] [g
Maturity [Vears] is Waolatility [%] 10
Lattice Steps i‘l i] =&l % inputs are annualized rates.
Blackout Steps and Yesting Periods [For Custom and Bermudan Options]):
|
Add Modi Remove
Example: 1.2.10-20, 35 L
Optiohal Terminal Mode E quation (Optians At Expirationt Benchmark
Call Put
Black-Scholes Euopean:  $23.42 $1.30
Example: MAX[Asset Cast, 0] Clozed-Fom Americar: $23.42 $329
Binomial Europear: $23.42 $1.30
- Custom Equations [For Custom O ptions] Binomial American: $23.42 4330
Intermediate Mode Equation [Options Before Expiration):
Result

American Option: $23.1905
European Option: $23.1905

Example: MAx[Azset-Cost, @4E)

|rtermediate Node Equation [During Blackout and Vesting Periods):

[ Generate Audit \Workhest

LClear &1 I

Example: @&

FIGURE 9.6 SSLS Results with a 10-Step Lattice

the Bermudan option assumes that during the blackout lattice steps, the op-
tion will be kept open and cannot be executed. If you also enter the Inter-
mediate Equation, the Custom Option should be first chosen (otherwise you
cannot use the Intermediate Equation box). The Custom Option result uses
all the equations you have entered in Terminal, Intermediate, and Intermedi-
ate with Blackout sections.

The Custom Variables list is where you can add, modify, or delete custom
variables, the variables that are required beyond the basic inputs. For instance,
when running an abandonment option, you need the salvage value. You can
add this in the Custom Variables list, provide it a name (a variable name must
be a single word), the appropriate value, and the starting step when this value
becomes effective. That is, if you have multiple salvage values (i.e., if salvage
values change over time), you can enter the same variable name (e.g., salvage)
several times, but each time, its value changes and you can specify when the
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appropriate salvage value becomes effective. For instance, in a 10-year, 100-
step super lattice problem where there are two salvage values—$100 occur-
ring within the first 5 years and increases to $150 at the beginning of Year
6—you can enter two salvage variables with the same name, $100 with a
starting step of 0, and $150 with a starting step of 51. Be careful here as
Year 6 starts at step 51 and not 61. That is, for a 10-year option with a 100-
step lattice, we have: Steps 1-10 = Year 1; Steps 11-20 = Year 2; Steps
21-30 = Year 3; Steps 31-40 = Year 4; Steps 41-50 = Year 5; Steps 51-60
= Year 6; Steps 61-70 = Year 7; Steps 71-80 = Year 8; Steps 81-90 = Year
9; and Steps 91-100 = Year 10. Finally, incorporating 0 as a blackout step
indicates that the option cannot be executed immediately. See Chapter 10
for more details on using Custom Variables.

MULTIPLE SUPER LATTICE SOLVER

The MSLS is an extension of the SSLS in that the MSLS can be used to solve
options with multiple underlying assets and multiple phases. The MSLS al-
lows the user to enter multiple underlying assets as well as multiple valuation
lattices (Figure 9.7). These valuation lattices can call to user-defined custom

3 Multiple Super Lattice Solver
Fle Help

taturity I Comment |

r— Undeslping Aot ~ Cuzlom Y aiabie:
Lattice Mams | Pubesst(5) | Volstliy (%] | Motes | Varishle Mame | Vaue | StaringStep |
Comrelstions Add Modity | Remave [
Ophion Y aksation
Elackouk and Vesting Perod Steps |

Laltice Mame | Cost(#) | Siskie= (%) | Dividend ()| Steps | Temind Equation | Interme Add Madily Remave

Slabus
Ready
<] i ] [i] [ Cieabz audt workshests
Add | heodiy | Fiemove | |
Hun Clzar &l

FIGURE 9.7 Multiple Super Lattice Solver
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variables. Some examples of the types of options that the MSLS can be used
to solve include:

m Sequential Compound Options (two-, three-, and multiple-phased se-
quential options).

m Simultaneous Compound Options (multiple assets with multiple simul-
taneous options).

m Chooser and Switching Options (choosing among several options and
underlying assets).

m Floating Options (choosing between calls and puts).

® Multiple Asset Options (3D binomial option models).

The MSLS software has several areas including a Maturity and Comment
area. The Maturity value is a global value for the entire option, regardless of
how many underlying or valuation lattices exist. The Comment field is for
your personal notes describing the model you are building. There is also a
Blackout and Vesting Period Steps section and a Custom Variables list sim-
ilar to the SSLS. The MSLS also allows you to create Audit Worksheets.

To illustrate the power of the MSLS, a simple illustration is in order.
Click on Start | Programs | Real Options Valuation | Real Options Super
Lattice Solver | Sample Files | MSLS — Two-Phased Sequential Compound
Option. Figure 9.8 shows the MSLS example loaded. In this simple example,
a single underlying asset is created with two valuation phases.

Multiple Super Lattice Solver (Real Options Valuation, Inc.) Ed
Fle Help
Fatirity |z Cornmrent |S'mple TwoPhased Sequentia Compound Optice
r— Undeslping Aswss ~ Cuzlom % aiabie:
LaticaMame | P Ass=t(s) | Voatliy(%) | Notes | Varizkle Mame | Walue | Stariing Step |
Undeilping 100 30

Comrelstions Add Modity Remaove

Ophion Y aksation

Blackaolk and Vesting Fieriod Steps |

Laltice Mame | Cost (3] Fizkfree (%] | Dividend (%] | S Terminal E quation ntermediale Add Madify Femave
Fhaze? an A n 1nn Max[Undedying-Cozl 0 Maxllndeily
Phazel 3 3 1} B0 Man[~hase2 Cast 0] “anPhase? Slabus

Latlice phase1: $27 A734

<l = 2] [T Cieate audt workshests
Sample Commands: Mas 1L And, O 2= <=3 ¢ Adid | koudify | Remove |
Hun Claar &l |

FIGURE 9.8 MSLS Solution to a Simple Two-Phased Sequential Compound Option
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Phase 2

Cash-flow-generating activities............
PV Asset $100M

Year 0 Year 1 Year 2
FIGURE 9.9 Strategy Tree for Two-Phased Sequential Compound Option

The strategy tree for this option is seen in Figure 9.9. The project is ex-
ecuted in two phases—the first phase w